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Abstract

The nematic liquid crystal phase is a phase of matter in which the particles have a preferred
orientational direction, as opposed to the liquid phase, with no preferred direction, and the
solid crystal phase, with an ordered lattice structure. In an aggregated dye, or chromonic,
liquid crystal, molecules come together in aggregates, and these aggregates form a liquid
crystal. Aggregated dyes that form liquid crystals have been known for some time, but
few fundamental measurements have been taken prior to this research. Unlike most liquid
crystals, aggregated dye liquid crystals are water-soluble, opening the door to applications
of liquid crystals in the fields of biology and medicine. In order to move ahead with explo-
rations of applications and general understanding of chromonic liquid crystals, more must
be known about the properties of this phase; thus, this research focuses on one aggregated
dye liquid crystal, aqueous Sunset Yellow FCF. Phase diagram measurements, birefringence
measurements, and order parameter measurements were obtained for aqueous Sunset Yel-
low. A general model of the aggregation consistent with both the results of the birefringence
measurements and the results of the order parameter measurements is suggested in which
the nitrogen-nitrogen double bonds of the Sunset Yellow molecule are perpendicular to the
long axis of the aggregate.
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Chapter 1

Introduction

This investigation delves into understanding an aggregated dye liquid crystal, a material

that forms a liquid crystal at high concentrations due to the interactions between molecules

that cause the molecules to aggregate. Measuring some fundamental properties of the liquid

crystal, the phase diagram, the birefringence, and the order parameter, the research reported

here has shed light on the nature of both the aggregation of the molecules and the nematic

liquid crystal phase that the aggregates form.

1.1 Liquid Crystals

The liquid crystal phase of matter interests researchers for many reasons, mostly involving

optical properties not seen in other fluids along with a sensitivity to external conditions.

These properties have made liquid crystals useful particularly in display devices. Despite

the importance of liquid crystals, there are still areas of liquid crystal science in which

fundamental properties have not been measured. One example of this are the liquid crystal

phases formed by aggregated dyes.

In general, the solid crystal phase of a material exhibits more order than the liquid

phase. A liquid is isotropic. It has no orientational order and is therefore the same in

every direction, with no preferred direction; the particles’ motion is random. A solid crystal

has an orientation and position for each particle, with motion generally confined to lattice

vibrations. Some materials have a liquid crystal phase, in which the material is a fluid with

orientational order. This has order in between the higher order of a solid crystal and the

disorder of its liquid phase. Fluidity allows the liquid crystal to easily change in response

to a stimulus while orientational order gives liquid crystals interesting optical properties as

compared to an isotropic liquid. Only certain materials have the liquid crystal phase; the

material’s particles must be anisotropic, meaning that the particles are not the same in every
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Figure 1.1: A typical calamitic, or rod-like, liquid crystal molecule [1]. This
molecule forms a thermotropic liquid crystal, which needs no solvent to have a
liquid crystal phase.

order

solid crystalnematic liquid crystalisotropic liquid

Figure 1.2: The isotropic liquid, the nematic liquid crystal, and the solid crystal
are three distinct phases of matter. The liquid has no order, and is said to be
isotropic because there is no preferred direction. The nematic liquid crystal dis-
tinguishes itself from other phases with orientational order in one dimension but
no positional order. The solid crystal has both orientational and positional order
in three dimensions, with the particles held in a lattice. In this figure, the director
of the nematic liquid crystal, indicating the average direction of the particles, is
vertical.

direction. In general, the particles are either rod-shaped or disk-shaped. In the former case,

the liquid crystal is called calamitic; in the latter it is called discotic. Figure 1.1 shows

a typical calamitic liquid crystal molecule. Figure 1.2 shows how rod-like particles form a

nematic liquid crystal. In the nematic liquid crystal phase, the particles tend to line up in

a particular direction, called the director, so the particles have orientational order but no

positional order.

Liquid crystals are generally classified either as lyotropic liquid crystals or as ther-

motropic liquid crystals. Lyotropic liquid crystals emerge in solutions of compounds, and

usually have a liquid crystal phase only when in solution with some solvent, with the phase

depending on both temperature and concentration. In contrast, thermotropic liquid crystals

have temperature-driven phase transitions, without the need for a solvent.

Most lyotropic liquid crystals have molecules with a rigid polar ‘head’ group and a

flexible nonpolar ‘tail’ group, as shown in Fig. 1.3. The polar head is hydrophilic while

the nonpolar tail is hydrophobic, so that at certain temperatures and concentration, the
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Figure 1.3: A typical lyotropic molecule, with a polar head and a nonpolar tail.

Figure 1.4: A micelle shown in cross-section. The hydrophilic heads of a lyotropic
molecule aggregate to shield the hydrophobic tails of the molecule from the sur-
rounding water. This is a liquid crystal structure typical of soap molecules.

molecules arrange into structures such as micelles, as shown in Fig. 1.4. Soaps and various

phospholipids are examples of lyotropic liquid crystals with polar heads and nonpolar tails [1].

Like many solids, liquid crystals have more than one index of refraction. The index

of refraction of a material is defined by n ≡ c/v, where c is the speed of light in the vacuum

and v is the speed of light in the material. In a liquid crystal, light polarized parallel

to the director experiences one index of refraction, the extraordinary index ne, and light

polarized perpendicular to the director experiences another index of refraction, the ordinary

index no. Light polarized at some other angle with respect to the director, on the other

hand, experiences more than one index of refraction. The parallel component experiences

the extraordinary index ne and the perpendicular component experiences the ordinary index

no, such that linearly polarized light becomes elliptically polarized when it passes through

a liquid crystal. This results in the optical property of birefringence, or double refraction,

illustrated in Fig. 1.5, in which a material has two indices of refraction, ne and no.

In addition to the birefringence, a second measurable property, the order parameter,

reveals the structure of the material, in this case measuring how close the molecules are,

on average, from being aligned with the director. The order parameter S will be defined in

Eq. (2.17) such that an order parameter of zero corresponds to randomly oriented molecules,

an order parameter of 1 corresponds to every molecule aligning with the director, and an

order parameter of −1
2

corresponds to every molecule aligning perpendicular to the director.
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Figure 1.5: A birefringent material has two indices of refraction. One index, ne,
called the extraordinary index, is for the component of light polarized in the di-
rection of the optical axis of the material, and the other index, no, the ordinary
index, is for light polarized in any direction perpendicular to the optical axis. The
birefringence is the difference between these two indices, ∆n ≡ ne − no. Some
solids are birefringent and some are not. The orientational order of liquid crystals
creates an anisotropy that makes liquid crystals birefringent.

1.2 Lyotropic Chromonic Liquid Crystals

Lyotropic chromonic liquid crystals form a liquid crystal phase in the aggregate, which

distinguishes them from thermotropic liquid crystals. In most of the liquid crystals that

have been studied, including the lyotropic liquid crystal described above, the particles that

form the liquid crystal phase are molecules. However, the particles in lyotropic chromonic

liquid crystals, or LCLCs, are aggregates of molecules. Though these particles are formed

from multiple molecules, they exhibit a nematic liquid crystal phase nonetheless. We use

the term aggregated dye liquid crystal to refer to the class of dyes that form LCLCs. In

addition to dyes, certain materials used as drugs, nucleic acids, antibiotics, and anti-cancer

agents have been found to have the LCLC phase [2].

Chromonic liquid crystals are considered lyotropic because they have a liquid crystal

phase only while in solution. However, they differ from other lyotropic liquid crystals in

a number of ways. Chromonic molecules have a different shape than the typical lyotropic

molecule shown in Fig. 1.3, tending to be plank-like or disk-like. Chromonic molecules gen-

erally are rigid, without a flexible tail, and are aromatic rather than aliphatic [3], referring

to parts of molecules with benzene rings. Both soap-like lyotropic molecules and LCLCs

aggregate, but LCLCs have hydrophobic surfaces such that they tend to form linear aggre-

gates in water. Soap-like molecules will aggregate until they form a micelle, at which point

the lyotropic molecules have minimized their free energy, whereas in a LCLC system there

is no optimum aggregate size [4]. As will be shown in section 2.1.1, the interplay between

energy and entropy results in an equilibrium distribution of aggregate sizes. Figure 1.6 shows

how the aggregate grows with increasing concentration and forms a nematic liquid crystal.
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(a) mostly monomers (b) growth of aggregate (c) nematic

Figure 1: Minipages Inside Subfigures

1

Figure 1.6: In some cases, the particles forming a liquid crystal are aggregates of
molecules rather than single molecules. Here we see an LCLC at various concen-
trations. At low concentrations (a), the molecules are mostly monomers with some
dimers, and the substance is in the liquid phase. As the concentration increases
(b), the aggregates grow until (c) they form particles that show a preferred di-
rection, and the substance is in the liquid crystal phase. There are two levels of
structure. On the smaller level, molecules aggregate together as the concentration
increases. On the larger level rod-like particles made up of aggregated molecules
form a nematic liquid crystal phase. From Ref. [5].

Comparing Fig. 1.6 with Fig. 1.2 shows that the chromonic nematic liquid crystal phase is

more similar to the thermotropic nematic liquid crystal phase than to the micelle shown

in Fig. 1.4, as noted by Ref. [2]. Although both chromonics and micelle-forming lyotropics

are considered lyotropic liquid crystals, chromonics have much in common structurally with

thermotropic liquid crystals.

1.3 Prior Work in this Area

LCLCs were occasionally observed but were a mystery until 1971, when the first basic ob-

servations and phase diagram of one LCLC were published. Most prior work in the area

of chromonic liquid crystals has been in classifying the phases of chromonic liquid crystals,

including the nematic (N), and hexagonal columnar (M) phases. Cox et al. [6] observed the

phases of the LCLC drug disodium chromoglycate (DSCG) and plotted a phase diagram in

1971 [4,7], and soon thereafter, negative birefringence was observed in the nematic phase of

DSCG [7]. DSCG is very water soluble and, according to optical microscopy observations,

has two mesophases, the N phase and the M phase [4]. The M phase is thought to be a

positionally ordered phase in which the columns are ordered in a two dimensional hexagonal

pattern. X-ray diffraction studies show a peak at 0.34 nm for DSCG [6–8]; this is the spacing

between molecules of DSCG in the aggregate [4]. NMR measurements of DSCG show that
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the order parameter is quite high [8]. The order parameter of bonds in DSCG, based on

absorption measurements, is negative, and equal to values around −0.1, depending on the

bond measured [9]. Other studies of DSCG include sodium NMR spectra [10]. More LCLCs

were discovered and measured [11], until it became apparent that lyotropic chromonic liquid

crystal systems like DSCG are common [12].

Other than studies of DSCG, many of the studies of LCLCs have been qualitative. In

addition, some quantitative measurements have been taken, including NMR and X-ray mea-

surements of 7,7’-DSCG [13] and of some xanthone derivatives [14]. Many measurements are

aimed at understanding the underlying structures of LCLCs. Polarizing optical microscopy

and X-ray diffraction measurements of a cyanine dye and of C.I. Acid Red 266 suggest that

C.I. Acid Red 266 aggregates in a hollow tube structure, cyanine dye molecules aggregate in

a brickwork structure [15], and the azo dye C.I. Direct Blue has unimolecular stacking [16].

The aggregate columns of a dye LCLC, Violet 20, was imaged at high magnification by

atomic force microscopy, showing columns generally 1-2 nm in width and 1-2 nm apart [17].

The 0.34 nm stacking separation between molecules, independent of concentration and tem-

perature, seems to be common in LCLC systems [4, 16]. Stegemeyer and Stöckel measured

the average number of molecules within an aggregate of pseudo isocyanine chloride to be in

the range of 40 to 50, measured spectroscopically near the isotropic-nematic transition [18].

These studies show that in general, LCLC systems have both a nematic and a columnar

phase and that the stacking distance between molecules is generally 0.34 nm.

What causes LCLC molecules to aggregate? In general, the flat molecules pack face-

to-face to form a molecular stack. This packing is called the π-π interaction. Lydon [2] notes

that there are two ideas for why chromonic molecules aggregate in water. The first is that

molecules are simply avoiding the water. The aromatic rings generally found in the center

of these flat molecules are not water soluble, and so by stacking together, the aromatic rings

have less contact with the water. The second idea is that the conventional van der Waals’

forces from atom center to atom center explain stacking. Maiti et al. [3] have shown that

computer simulations of hydrophobic molecules with small hydrophilic peripheries exhibit

columnar aggregation of the molecules. They modeled each molecule of an LCLC as a

diamond pattern of seven touching hydrophobic spheres with hydrophilic spheres at each

end, and found that for aggregation to take place it is necessary that the molecule have an

overall hydrophobicity.

Some current research explores applications of LCLCs. Ichimura et al. [19] studied

photoalignment of dye LCLCs, with potential applications to stereoscopic liquid crystal

displays. Shiyanovskii et al. [20] have proposed a microbial sensor that uses DSCG to detect

and amplify the presence of immune complexes.
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Turner’s dissertation reported that Sunset Yellow FCF has a liquid crystal phase [11],

and Luoma’s dissertation investigated this phase of Sunset Yellow using optical, magnetic,

and X-ray techniques [5], finding that the stacking distance is again 0.34 nm. In the research

reported here, the investigation of the nematic phase of Sunset Yellow is continued with

optical measurements.

1.4 Motivation and Goals

Compared to other liquid crystals, very little is known about the molecular interactions or

the phase of LCLCs, with the exception of DSCG. There is a great deal of data for DSCG,

but only a general understanding of other LCLCs has been established. Clearly, there is

plenty more to explore in this field. In order to better understand the structure of LCLCs, I

studied the optical properties of one LCLC, Sunset Yellow FCF. Sunset Yellow was chosen as

a representative of the many aggregated dye liquid crystals known to exist. I plotted a phase

diagram, measured the birefringence of various concentrations of solution, and measured

the order parameter of Sunset Yellow. Based on these optical measurements, I suggested a

model of the aggregate.

1.5 Organization

Chapter 2 discusses the statistical mechanics of the aggregation; the form of the phase di-

agram is predicted by making assumptions about the entropy, energy, and interactions of

the molecules and aggregates. Following this, a discussion of the anisotropy and optics of

liquid crystals leads to a formula for measuring the order parameter. Chapter 3 describes

Sunset Yellow FCF, the aggregated dye liquid crystal studied here. Chapter 4 describes the

procedure used in collecting data for the phase diagram, the birefringence, and the order

parameter of the liquid crystal. This includes Jones calculations showing how the experimen-

tal setup for the birefringence measurements made it possible to arrive at the birefringence.

Chapter 5 presents four graphs of data collected: the phase diagram, birefringence mea-

surements, the index of refraction of isotropic Sunset Yellow, and the order parameter of a

sample of Sunset Yellow. Chapter 6 presents a general model of the aggregation of Sunset

Yellow, compares the theoretical and experimental phase diagrams, and compares the work

of others to results presented here. Chapter 7 concludes the thesis.
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Chapter 2

Theory

2.1 Statistical Mechanics of Aggregation

The temperature and the concentration of Sunset Yellow determine the size of its aggregates

and its phase. Here we use the statistical mechanics of aggregation and, in section 2.1.2, the

mechanics of nematic liquid crystal particles, to predict the size distribution of the aggregates

and the phase of the solution.

2.1.1 Finding the Number of Molecules in the Aggregate

We will determine the average expected length 〈n〉 of the aggregate by minimizing the

Helmholtz free energy F of the system of aggregates.

It is useful to define a number of constants and variables.

F = the Helmholtz free energy of the system,

E = the energy of the system of aggregates,

T = the temperature,

S = the entropy of the system,

i = the number of molecules in an aggregate,

ε = the energy gained each time two molecules aggregate,

N = the number of aggregates in the solution

Ni = the number of aggregates of length i in the solution,

V = the volume,

νi = Ni/V = the number of aggregates of length i per unit volume,

kB = Boltzmann’s constant = 1.38065× 10−23 J/K,
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h = Planck’s constant = 6.62607× 10−34 m2 kg/s,

b1 = the volume of one molecule in the aggregate,

Φ = the volume fraction of the sample in water

Mw = the molecular weight, and

〈n〉 = the average number of molecules in an aggregate.

The following calculation of the free energy F and of the the number of aggregates of length i

per unit volume νi follows a similar calculation Ref. [5, pp. 31-32] for the aggregation of

DSCG.

The mass of a single molecule in the aggregate is ρb1, where ρ is the mass density of

aggregated Sunset Yellow.1 Then mi = iρb1 is the mass of an aggregate of i molecules.

For Sunset Yellow FCF, some values are known. The molecular weight is Mw =

0.45238 kg/mol. We know the area of a molecule of Sunset Yellow by computer model2.

Multiplying this area by the stacking separation measured by Ref. [5], 0.34 nm, we find that

the volume of a molecule of Sunset Yellow in the aggregate is b1 = 4.5×10−28 m3. We assume

that the system is isodesmic, i.e., that the energy gained when two molecules of Sunset Yellow

aggregate together ε is constant [2]. From Ref. [22], this energy is ε = 8.67× 10−20 J. From

Ref. [5], the density of aggregated Sunset Yellow is ρ = 1400 kg/m3.

We wish to find the Helmholtz free energy per unit volume F/V , where

F ≡ E − TS. (2.1)

In order to calculate the free energy, we will be making a number of assumptions about the

energy and entropy of the sample. The assumptions that the sample is similar to an ideal gas

should only hold at low concentrations and temperatures, when the particles interact with

each other less. Even if the theory breaks down at higher concentrations and temperatures,

it illustrates that the basic aggregation behavior can be predicted with a very simple model.

We assume the solution of aggregates is sufficiently dilute that each aggregate is non-

interacting with the other aggregates, so that the system has an entropy like that of an ideal

gas. Then the Sakur-Tetrode equation [23, p. 362] gives the entropy as

S = NkB

(
ln

V

N
+

3

2
ln T +

3

2
ln

2πmkB

h2
+

5

2

)
.

1An alternative approach to calculating the mass of a molecule is to use the molecular weight. However,
it is unclear whether the sodium atoms should be considered a contributing component of the molecule’s
mass, since the sodium will tend to disassociate in water.

2The CAChe Scientific Molecular Modeling program, from Ref. [21].
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Let Λi be the thermal wavelength of an aggregate of i molecules, given by

Λi = h
/√

2πmikBT . (2.2)

Then the entropy of all aggregates of i molecules is

Si = V νikB

(
ln

1

νi

+ ln T 3/2 + ln(TΛ2
i )
−3/2 +

5

2

)
so that the entropy per unit volume of all aggregates of i molecules is

Si

V
= −νikB

(
ln νiΛ

3
i −

5

2

)
. (2.3)

The energy of an ideal gas is entirely kinetic, and equal to 3
2
NkBT , by the equipar-

tition theorem [23]. However, unlike an ideal gas each aggregate has an internal energy

because there is an energy ε gained each time two molecules aggregate. To form an aggre-

gate of i molecules, two molecules must aggregate together i−1 times, so the internal energy

of each aggregate is −(i − 1)ε. Note that the energy of a shorter aggregate is higher than

the energy of a longer aggregate. Then the internal energy of all aggregates of i molecules

per unit volume is −νi(i − 1)ε. Adding the internal energy per unit volume to the energy

per unit volume of an ideal gas, we arrive at the energy of the system of aggregates.

Ei

V
=

3

2
νikBT − νi(i− 1)ε. (2.4)

From equations (2.4) and (2.3), Eq. (2.1) gives the free energy per unit volume as

F

V
= kBT

∞∑
i=1

(
νi

[
ln(νiΛ

3
i )− 1

]
− νi(i− 1)

ε

kBT

)
(2.5)

where we sum over all aggregate lengths to calculate the total free energy. This system is

in contact with a temperature reservoir, namely the heating stage, so the Helmholtz free

energy is a minimum at equilibrium. Hence longer aggregates are energetically favorable

but decrease the entropy, giving an equilibrium distribution of aggregate sizes. Since the

system has a fixed number of solvent and dye molecules, Ndye molecules/V =
∑

iνi, we wish

to minimize F/V subject to the constraint

Φ = b1

∞∑
i=1

iνi = constant (2.6)
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to find the equilibrium distribution of aggregate sizes. The volume fraction Φ is the ratio of

the volume of Sunset Yellow to the volume of the solution of water and Sunset Yellow. The

average number of molecules in an aggregate 〈n〉 can be obtained from

〈n〉 =
Ndye molecules/V

Naggregates/V
=

∑
iνi∑
νi

=
Φ

b1

∑
νi

(2.7)

where the sums are over i.

Let λ be a Lagrange multiplier and let

Fi ≡
Fi

V kBT
+ λΦ

where Fi/V is the free energy per unit volume of all aggregates of i molecules. The free

energy is minimized when the partial derivative of Fi vanishes,

∂Fi

∂νi

=
∂

∂νi

(
Fi

V kBT

)
+ λ

∂

∂νi

Φ = 0.

Calculating the partial derivative,

0 =
∂Fi

∂νi

=
∂

∂νi

(
νi

[
ln(νiΛ

3
i )− 1

]
− νi(i− 1)

ε

kBT
+ λb1iνi

)
= ln(νiΛ

3
i )− (i− 1)

ε

kBT
+ λb1i.

Then at equilibrium the number of aggregates of length i per unit volume is

νi = Λ−3
i exp

[
− ε

kBT

]
exp

[
i

(
ε

kBT
− λb1

)]
. (2.8)

We wish to find λ so that we may calculate νi. Equations (2.8), (2.2), and (2.6) give

Φ eε/kBT

b1

(
2πρb1kB

h2

)3/2
T 3/2

=
∞∑
i=1

i5/2e
i
“

ε
kBT

−λb1
”

which is graphed in Fig. 2.1 in the form

y =
∞∑
i=1

i5/2xi (2.9)
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Figure 2.1: Equation (2.9) is used to find x for a given y and hence the Lagrange
multiplier λ.

where

y ≡ Φ eε/kBT

b1

(
2πρb1kB

h2

)3/2
T 3/2

and x ≡ e

“
ε

kBT
−λb1

”
. (2.10)

Given y, it is possible to find x numerically using Mathematica’s FindRoot function, as

demonstrated in Appendix A. Then λ is given by Eq. (2.10) in the form λ = ε/b1kBT −
ln x /b1.

Thus we can numerically calculate 〈n〉 for any given temperature and concentration,

as follows. Experimentally, I have found that at a molar concentration of cm = 1.00 M

and a temperature of 49.9◦C, Sunset Yellow FCF undergoes a phase transition between the

isotropic phase and the isotropic-nematic coexistence phase (see Fig. 5.1 for experimental

results). Using the equations of this section, we can calculate 〈n〉 for this concentration and

temperature. First it is necessary to calculate the volume fraction of this sample.

In general, the concentration and the volume fraction of a solution are related. The

volume fraction is

Φ ≡ Vsolute

Vsolvent + Vsolute

=
msolute/Vsolvent

msolute/Vsolvent + msolute/Vsolute

where msolute is the mass of the solute (in this case, Sunset Yellow), msolvent is the mass of the

solvent (in this case, water), and Vsolute and Vsolvent are the respective volumes. Noting that

the number of kilograms of dye per liter of water is msolute/Vsolvent = Mwc, where c is the

concentration of the dye converted to units of mol/m3 (i.e., c = 1000 L/m3 × cm), and the
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Figure 2.2: The number density νi of aggregates of length i, at a molar concen-
tration of cm = 1.00 M. At this concentration, the average number of molecules
in an aggregate is 〈n〉 = 4.1 at a temperature of T = 49.9◦C and 〈n〉 = 5.2 at
T = 37.9◦C. These two points on the phase diagram were chosen because they lie
on the isotropic-coexistence curve and the coexistence-nematic curve, respectively
(see the phase diagram results in Fig 5.1 on page 44).

density of the dye is ρ = msolute/Vsolute, we arrive at a convenient relation between volume

fraction and concentration,

Φ =
Mwc

Mwc + ρ
. (2.11)

Note that ρ is much larger than Mwc, and so ρ dominates in the denominator. This shows

that, although Eq. (2.11) is not a linear relation, the volume fraction is approximately

proportional to the concentration.

Now we can calculate that a concentration of 1.00 M corresponds to a volume fraction

of 0.244, so the phase change observed experimentally occurs at Φ = 0.244 and T = 323 K.

Using equations (2.11), (2.10), (2.9), (2.8), and (2.7), we find the distribution of aggregate

lengths for this concentration and temperature, plotted in Fig. 2.2, and the average number

of molecules in an aggregate, 〈n〉 = 4.1 (see Appendix A).
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2.1.2 Modeling the Phase Diagram

The method for calculating 〈n〉 allows us to predict the form of the phase diagram using

only one experimental data point.

We will apply the Onsager approach, as described in Ref. [24]. This assumes that

each aggregate is a hard rod with well-defined length L and diameter D. The only forces

are due to collisions of the rods. The solution is assumed to be dilute, Φ � 1, and the rods

are long, L � D, so that end effects may be ignored.

These assumptions are likely too strong for a system with a distribution of aggregate

lengths, where L < D for many aggregates, including a significant number of monomers and

dimers, and where Φ is around 0.24. However, the Onsager theory for nematics of hard rod

solutions provides an interesting starting point for understanding the system and so we forge

onwards.

According to the Onsager approach, the value of Φ for the isotropic phase in equilib-

rium with the nematic phase is

Φ = 3.3 D/L, (2.12)

so, noting that the diameter D is constant, ΦL = 3.3 D = constant. Similarly, in the nematic

phase, just at the transition point,

Φ = 4.5 D/L, (2.13)

so ΦL = 4.5 D = constant. But the length of a rod is proportional to the number of molecules

in the rod. On average this is 〈n〉, so

Φ〈n〉 = constant

for points along the isotropic-coexistence curve or along the coexistence-nematic curve. We

already have one point from that curve: for cm = 1.00 M and T = 49.9◦C, we have Φ〈n〉 =

1.0. Using trial and error, for any concentration, we can find a temperature such that

Φ〈n〉 = 1.0, and this concentration and temperature is expected to fall on the isotropic-

coexistence curve. Thus one experimental value, i.e. the temperature at which an 1.0-M

solution crosses the isotropic-coexistence curve, yields the full curve theoretically.3 The same

is true of the coexistence-nematic curve, but first it is necessary to calculate a value on the

coexistence-nematic curve. The diameter D of the rods is a constant independent of volume

3Given a value for D and for L, it is possible to predict a theoretical phase diagram from equations (2.12)
and (2.13) with no experimental point. However, the theory breaks down at this point, and the resulting
theoretical phase diagram is not found to be in close agreement with the experimental results.
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fraction and temperature. For a given volume fraction, the length L of the rods in the

solution is a function of temperature. By equations (2.12) and (2.13),

3.3

Liso-coex

=
4.5

Lcoex-nem

where Liso-coex is the length of a rod for a solution at the given volume fraction and on the

transition point from an isotropic solution to a solution with coexistence, and Lcoex-nem is the

length of a rod for a solution at the given volume fraction and on the transition point from

a solution with coexistence to a nematic solution. Since the length of a rod is, on average,

proportionate to the average number of molecules in an aggregate, we have

4.5

3.3
=
〈n〉coex-nem

〈n〉iso-coex

. (2.14)

Hence both the curves can be calculated given a single experimental data point. The result

is shown in Fig. 2.3, and it suggests that the slope of the transition curves should be 56◦C/M

for the isotropic-coexistence curve and 50◦C/M for the coexistence-nematic curve.

2.2 Anisotropy in Liquid Crystals

For a single particle of a liquid crystal, we can predict how a measured property of the liquid

crystal phase is affected by the anisotropy of the molecule. This provides a way to empirically

investigate the way the particles are ordered. This section will define the order parameter

of a liquid crystal and derive an equation that will be used to find the order parameter of a

liquid crystal with optical measurements.4

2.2.1 Anisotropy and Order Parameter

Suppose we choose a coordinate system based on a molecule, as shown in Fig. 2.4. Consider

any tensor property

T =

 Txx 0 0

0 Tyy 0

0 0 Tzz

 (2.15)

where we have assumed that the tensor is diagonal because we are in the principle coordinate

system of the molecule. Note that the trace is Tr(T) = Txx +Tyy +Tzz. We are interested in

understanding what happens to this property T when it is measured in a different coordinate

4This section follows the argument in section 2.3 in Ref. [1].
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Figure 2.3: The theoretical phase diagram. We are able to calculate 〈n〉 for a given
concentration and temperature. The Onsager result suggests that Φ〈n〉 is constant
along the isotropic-coexistence curve and along the coexistence-nematic curve. On
the isotropic-coexistence curve, the 1.0-M data point shown here is an experimental
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Figure 2.4: The coordinate system of a molecule. On the macroscopic level, it
is convenient to use a coordinate system based on the director, the direction the
molecules are pointing on average in in the liquid crystal sample. The director’s
coordinate system is shown here as the primed axes, with the z′-axis giving the
direction of the director. However, each molecule may deviate from the director’s
coordinate system. We can speak of the molecule’s own coordinate system, the
unprimed system, and rotate between the two coordinate systems. It is assumed
that the molecule has an axis distinct from the other axes. The z-axis follows the
unique axis of this molecule. In the figure, the unique axis is shown as the long
axis, but the unique axis of Sunset Yellow FCF is better described as the axis of
the nitrogen-nitrogen double bond for some optical measurements. This is further
discussed in section 6.1 on page 49.

20



system, namely, the coordinate system of the director. We will mathematically rotate twice

by arbitrary angles ϕ about the z-axis and ϑ about the y-axis so that the direction is

completely general. We call the rotated tensor property T′.

T′ = Ry(ϑ) Rz(ϕ)TRt
z(ϕ) Rt

y(ϑ)

=

 cos ϑ 0 − sin ϑ

0 1 0

sin ϑ 0 cos ϑ


 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1


 Txx 0 0

0 Tyy 0

0 0 Tzz



×

 cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1


 cos ϑ 0 sin ϑ

0 1 0

− sin ϑ 0 cos ϑ


This gives us a (somewhat complicated) matrix whose diagonal elements are

T ′
x′x′ = Txx cos2 ϑ cos2 ϕ + Tzz sin2 ϑ + Tyy cos2 ϑ sin2 ϕ

T ′
y′y′ = Tyy cos2 ϕ + Txx sin2 ϕ

T ′
z′z′ = Txx cos2 ϕ sin2 ϑ + Tyy sin2 ϑ sin2 ϕ + Tzz cos2 ϑ.

Then, using some trigonometric identities, Tr(T′) = Txx + Tyy + Tzz = Tr(T). Hence the

trace of the tensor property is invariant under rotation of the coordinate system.5

The anisotropy ∆T ′ for a liquid crystal is defined as the difference in properties

between one axis (parallel to the director) and the average of the property along the other

two axes (perpendicular to the director).

∆T ′ ≡ T ′
z′z′ −

1

2
(T ′

x′x′ + T ′
y′y′) (2.16)

=
3

2
T ′

z′z′ −
1

2
Tr(T′) [by the definition of trace]

=
3

2
T ′

z′z′ −
1

2
Tr(T) [by the invariance of trace]

=

(
3

2
sin2 ϑ cos2 ϕ− 1

2

)
Txx +

(
3

2
sin2 ϑ sin2 ϕ− 1

2

)
Tyy +

(
3

2
cos2 ϑ− 1

2

)
Tzz.

5In fact, rotation is a similarity transformation, a transformation that preserves angles and changes all
distances in the same ratio (in the case of rotation, the ratio is 1), and therefore rotation preserves trace in
general.
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We follow convention in defining two order parameters,

S ≡
〈

3

2
cos2 ϑ− 1

2

〉
≡ 〈P2(cos ϑ)〉 (2.17)

D ≡
〈

3

2
sin2 ϑ sin2 ϕ− 1

2

〉
−
〈

3

2
sin2 ϑ cos2 ϕ− 1

2

〉
where we take the average over values that are changing in time and changing from molecule

to molecule and P2(x) is the second Legendre polynomial. Then the anisotropy is

〈∆T ′〉 =

(
−1

2
S − 1

2
D

)
Txx +

(
−1

2
S +

1

2
D

)
Tyy + S Tzz

=

[
Tzz −

1

2
(Txx + Tyy)

]
S +

1

2
(Tyy − Txx) D. (2.18)

We assume that the molecule is almost uniaxial such that Tzz 6= Tyy ≈ Txx. Then

Tyy − Txx is small, so the first term in Eq. (2.18) dominates, and we will generally use S as

the order parameter, not D.

2.2.2 A Formula for Measuring the Order Parameter

It is not obvious how to measure the order parameter S from its definition, Eq. (2.17). We

will find that Eq. (2.18) leads to an equation for S such that S can be measured optically.

We need to choose a material property of the liquid crystal as our tensor T. The electric

susceptibility χ is a material property, but it isn’t immediately obvious how to measure it.

What is the relationship between electric susceptibility and the absorption of the

liquid crystal?

Consider an electromagnetic plane wave propagating in the ẑ direction with wave

number k, frequency ω, and complex amplitude U = U0 eikz. If the wave is propagating

through some material, then it will cause a dipole moment per unit volume, or polarization ~P ,

in the material. We assume that the material is a linear dielectric so that we may write
~P = ε0χ ~E, where ε0 = 8.85× 10−12 C2/Nm2 is the permittivity of free space. The constant

of proportionality χ is called the electric susceptibility tensor of the medium; we use a tensor

rather than a scalar to account for the fact that it is generally easier to polarize a liquid

crystal in some directions than in others. The permittivity of this material is defined as the

tensor

ε ≡ ε0(1 + χ) (2.19)

where 1 is the identity tensor [1, p. 195]. Let c be the speed of an electromagnetic wave in a
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vacuum and let v ≡ ω/k be the speed of the electromagnetic wave in the material. Then the

speed of light is c = (ε0µ0)
−1/2, and analogously, v = (εµ0)

−1/2, where µ0 ≡ 4π× 10−7 N/A2

is the permeability of free space and ε is the component of the dielectric constant tensor for

this direction [25]. Combining this with Eq. (2.19), we have

k =
ω

c

√
1 + χ. (2.20)

Following Ref. [26], we consider the electric susceptibility to be complex, χ = χr + χimi.

Then the wavenumber k is also complex, showing that both the magnitude and the phase of

the electric field vary with z. We split the complex wavenumber into its real and imaginary

parts, writing for convenience

k = b +
1

2
ai

where a and b are real. Now eikz = eibze−
1
2
az, so that the intensity of the wave is attenuated

by a factor |eikz|2 = e−az. For every distance of 1/a that the wave travels through the

material, the intensity drops by a factor of e. Absorption A is the logarithm of the factor

by which intensity is lowered,

A ≡ log10

I(0)

I(z)
= − log10 e−az =

az

ln 10
,

so for a given thickness z of material, A ∝ a.

Assuming that χr � 1 and χim � 1, we can use a Taylor approximation of the square

root in Eq. (2.20),

b +
1

2
ai = k =

ω

c

√
1 + χr + χimi

=
ω

c

(
1 +

χr + χimi

2

)
.

Equating the imaginary parts, we have a = ω
c
χim ∝ v

c
χim = χim/n. Hence

χim ∝ nA. (2.21)

Note that A depends on the orientation of light to the liquid crystal and n depends on

the polarization of the light relative to the director of the liquid crystal. Since the electric

susceptibility χ is a material property of the liquid crystal, nA is also a material property,

and we can use this to measure the order parameter S. In the discussion that follows, χ is

the imaginary part of the electric susceptibility tensor.
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We assume that due to bonds on the molecule, only the z-component of the incident

light is partially absorbed.6 Then

χyy = χxx = 0, (2.22)

and Eq. (2.18) becomes

〈∆T ′〉 = χzzS.

Combining this with Eq. (2.16) gives

〈∆T ′〉 = χzzS = χ′z′z′ −
1

2
(χ′x′x′ + χ′y′y′). (2.23)

By Eq. (2.22) and the invariance of trace,

Tr(χ′) = Tr(χ) = χzz. (2.24)

On the macroscopic level, the director is the only axis different from the others, so

χ′y′y′ = χ′x′x′ . (2.25)

Applying this to Eq. (2.23) yields

χ′z′z′ − χ′x′x′ = χzzS, (2.26)

and applying Eq. (2.25) to Eq. (2.24), the trace of the tensor is

χ′z′z′ + 2χ′x′x′ = χzz. (2.27)

Dividing Eq. (2.26) by Eq. (2.27) gives

S =
χ′z′z′ − χ′x′x′

χ′z′z′ + 2χ′x′x′
,

an equation for the order parameter that depends only on the imaginary part of the suscepti-

bility in the primed (macroscopic) coordinate system. Writing this in terms of the absorption

and the index of refraction, we have by Eq. (2.21)

S =
nz′z′Az′z′ − nx′x′Ax′x′

nz′z′Az′z′ + 2nx′x′Ax′x′
.

6In other words, when we apply Fig. 2.4 to the Sunset Yellow FCF molecule, we will choose the most
absorbing bond as defining the molecule’s z-axis. See Fig. 6.1 for more details about this bond.
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At this point, the notation can be cleaned up a bit. The z′ axis is the axis parallel to the

director, and the x′ axis is any axis perpendicular to the director. Thus we have

S =
n‖A‖ − n⊥A⊥

n‖A‖ + 2n⊥A⊥
(2.28)

which gives the order parameter S in terms of optically measurable quantities.

2.2.3 The Order Parameter for an Aggregated System

The above argument is generally true of liquid crystals. In an LCLC, however, the particle

making up the liquid crystal is an aggregate rather than a single molecule. The order

parameter S given in Eq. (2.28) is the order parameter of the molecules, Smolec, not of the

aggregate.

We will now consider the coordinate system of the aggregate, as shown in Fig. 2.5.

As in Fig. 2.4, the z axis gives the unique direction of the molecule. The z′ axis is the

macroscopic director, i.e., the director for the aggregate long axes on average; it represents

the laboratory coordinate system. The z′′ axis is the direction of the aggregate long axis.

In spherical coordinates in the z′′ coordinate system, let (θ1, φ1) give the direction of the z′

axis and let (θ2, φ2) give the direction of the unique axis of the molecule. Let γ be the angle

separating the z and z′ axes.

Applying the addition theorem for spherical harmonics [27, p. 746], we have a relation

for the angles of Fig. 2.5 in terms of Legendre functions:

Pn(cos γ) = Pn(cos θ1)Pn(cos θ2) + 2
n∑

m=1

(n−m)!

(n + m)!
Pm

n (cos θ1)P
m
n (cos θ2) cos m(φ1 − φ2).

The azimuthal angle φ2 that the molecule makes with the aggregate coordinate system is

not correlated with the azimuthal angle φ1 the aggregate long axis makes with the director.

Hence

〈cos[m(φ1 − φ2)]〉 = 0,

so that on average every term of the summation vanishes. We assume that θ2 is constant,

i.e. that all molecules in the aggregate make an angle θ2 with the long axis of the aggregate.

Then

〈P2(cos γ)〉 = 〈P2(cos θ1)〉P2(cos θ2).

By Eq. (2.17), 〈P2(cos γ)〉 is the order parameter Smolec of the molecules, while 〈P2(cos θ1)〉
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Figure 2.5: The coordinate system of an aggregate. The z and z′ axes are the same
ones shown in Fig. 2.4, with z giving the unique axis of a molecule in the aggregate
and z′ giving the direction of the director, the average direction of all aggregates.
The z′′ axis gives the direction of the long axis of the aggregate containing the
molecule.

26



is the order parameter Sagg of the aggregate. Hence

Smolec = Sagg P2(cos θ2). (2.29)

In section 6.1, this relation is used to calculate Sagg from the measurements of Smolec.
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Chapter 3

Materials

3.1 Sunset Yellow FCF

Sunset Yellow FCF is an aggregated dye liquid crystal. It is a synthetic coal tar and azo yellow

dye used as a food coloring (FD&C Yellow Number 6, or E110 in Europe). Its chemical name

is the disodium salt of 6-hydroxy-5-[(4-sulfophenyl)azo]-2-naphthalenesulfonic acid, and its

molecular structure is shown in Fig. 3.1. Pure Sunset Yellow FCF is a red-orange powder

or crystal that is water-soluble. The Na and the OH groups of the molecule are hydrophilic,

whereas the nonpolar aromatic rings tend to be slightly hydrophobic, and this promotes

aggregation of the molecules to protect the aromatic rings from water. Interactions between

the aromatic rings promote planar stacking, which also drives the tendency to aggregate.

The absorption spectrum for a dilute aqueous solution of Sunset Yellow FCF is shown

in Fig. 3.2. Previous measurements show that the absorption spectrum of aqueous Sunset

Yellow shifts as the concentration changes, indicating that aggregation of some sort occurs

at every concentration of aqueous Sunset Yellow [22].

N

N

SO3Na

OH

NaO3S

Figure 3.1: Sunset Yellow FCF is an azo yellow dye with aromatic rings. The
molecule is planar, with a molecular weight of 452.38 amu.
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Figure 3.2: The absorption spectrum of isotropic aqueous Sunset Yellow FCF.

I prepared the aqueous solutions of Sunset Yellow in concentrations ranging from

0.8505 M to 1.102 M. The first difficulty in doing so was that solid Sunset Yellow absorbs

moisture. In order to prevent this extra water from affecting the concentration of the solu-

tions, I ground the solid Sunset Yellow with a mortar and pestle and put it under a vacuum

overnight to dry. Afterwards, it was stored in the vacuum chamber.

I mixed aqueous solutions of Sunset Yellow by weighing a quantity of solid Sunset

Yellow in a vial, then pipetting millipore water into the vial. I sealed the vial as soon as I

had added the water. I mixed the dye with the water by placing the vial on a vortex mixer.

Mixing a solution with the vortex mixer could take up to an hour for concentrations of 1 M

and higher.
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Chapter 4

Experimental Methods

4.1 Phase Diagram

The first step in taking measurements of Sunset Yellow FCF was to plot a phase diagram

showing at what concentrations and temperatures the liquid crystal phase is stable.

In brief, the procedure for mapping the phase transitions was as follows: I first mixed

the solution of dye, then sealed it in a glass cell. Sealing the cell was necessary to prevent

evaporation that would alter the concentration of the solution. The cell was then placed on

a heating stage under a microscope, between crossed polarizers, and slowly heated. As the

dye heated, more and more of it changed from nematic to isotropic. I then cooled the sample

and the sample changed from isotropic to nematic. The details follow.

I mixed each concentration of Sunset Yellow on the same day I used it for phase dia-

gram measurements, so that the solution would not have much time to evaporate. Solutions

were stored in sealed vials.

I used glass microscope slides, Devcon high strength two-part, two-ton all purpose

epoxy adhesive, and 10-µm diameter glass fibers to make homemade glass cells, shown in

Fig. 4.1. I mixed the epoxy with a small amount of glass fibers. I put a tiny drop of the

mixture of epoxy and glass fibers on each of the four corners of a small rectangle of glass,

then stuck this glass rectangle onto a larger rectangle of glass. I pressed the two pieces

together, checking to see that they were parallel to each other by holding the cell under

monochromatic light and ensuring that the interference fringes were not too close together.

I wanted my cells to be sealed so that the water in the solutions would not evaporate. I

tested a variety of glues, including silicon gel, KrazyGlue, Duco Cement, Devcon epoxy,

PC-11 all-purpose white epoxy paste, and Weldbond Universal Space Age Adhesive to see

which would best seal the glass cell. I found that both the Devcon epoxy and the PC-11

epoxy were reasonably good at sealing a cell, though both required time overnight to cure.
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Devcon epoxy mixed with glass fibers

larger, lower piece of glass slide
smaller, upper piece of glass slide

Figure 4.1: For the homemade cell, two pieces of a glass slide are glued together,
spaced apart by 10-µm diameter glass fibers. With the glass pieces attached,
two edges would be sealed with epoxy. This cell would then be filled with a
sample of the dye and the remaining edges would be sealed with Critoseal (for the
phase diagram measurements) or epoxy (for the birefringence and order parameter
measurements) to prevent evaporation.

For each phase diagram cell, I sealed the edges of the cell together with Devcon

epoxy. I left two gaps around the edge so that later there would be space to fill the cell with

Sunset Yellow in solution. When I filled the cell, I would seal the gaps with Critoseal and

immediately take measurements for the phase diagram. The Critoseal wasn’t as effective as

the epoxy at preventing evaporation, but it required no curing time, allowing measurements

to immediately follow filling the cell.

I filled the cells by capillary action at room temperature. This could take several

minutes as the capillary action slowly drew solution further into the cell. During this time,

the solution was open to the air and would evaporate. To prevent this, I always filled the cells

inside a humidity chamber, which was implemented as an oven with open plates of water.

The humidity was generally between 90% and 100%, but it could fall to 60% if the door was

open too long, so I left the cells inside the closed chamber while they were filling. Heating

the oven while filling caused problems with the humidity and the water in the Sunset Yellow

solutions would evaporate before the cell was filled, so I filled the cells at room temperature.

With the cells prepared, I was ready to take the phase diagram measurements. I

taped each cell into a heating stage and placed it in a microscope between crossed polarizers,

ramping the heating stage at 0.4◦C per minute. I observed the phase changes while ramp-

ing up, noting the temperature where isotropic droplets first appeared and the temperature

where the nematic droplets completely disappeared. Similarly, while ramping down I noted

the temperature where the nematic droplets first appeared and the temperature where the

isotropic droplets completely disappeared. The coexistence region was determined to be

between the two temperatures for each ramping procedure. Figure 4.2 shows how the co-

existence region looks under the microscope, between crossed polarizers. By following the

above procedure, I was able to plot the phase diagram for the solution of Sunset Yellow in

water. The phase diagram, once plotted, was an important tool when taking birefringence
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Figure 4.2: As the solution of Sunset Yellow passes between the isotropic phase and
the nematic phase, patches of the solution are isotropic and patches are nematic.
This is the coexistence, or two-phase, region. The colorful patches are nematic
droplets while the darker areas are isotropic. This picture shows a cell that had
evaporated until it was in the coexistence region at room temperature. The two
phases occur simultaneously because the varying lengths of the aggregates cause
the sample to behave like an impure solution. The droplets of liquid crystal shown
here are about 0.5 mm wide.

measurements.

4.2 Birefringence

The first step was to determine how to analyze the data collected from the birefringence

measurements. Birefringence is defined by ∆n ≡ ne−no, where ne is the extraordinary index,

which is only measured for one polarization direction of light, and no is the ordinary index,

which is measured for a all polarizations of light that are perpendicular to the polarization

for the extraordinary index. In this case, ne is n‖ and no is n⊥, where n‖ is the index of

refraction for light polarized parallel to the director of the sample, and n⊥ is the index of

refraction for perpendicularly polarized light. Hence

∆n = n‖ − n⊥. (4.1)

Suppose λ0 is the wavelength of the light outside the sample. Then the wavelength of the

light while it passes through the cell depends on the polarization of the light:

λ‖ =
λ0

n‖
and λ⊥ =

λ0

n⊥
.
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The retardation of the sample is δ ≡ φ‖ − φ⊥, where the phase angles φ‖ and φ⊥ are given

by

φ‖ =
2π

λ‖
d and φ⊥ =

2π

λ⊥
d

where d is the thickness of the liquid crystal sample, so the birefringence is given by

∆n =
δλ0

2πd
,

or, in degrees,

∆n =
δλ0

360◦ d
. (4.2)

By measuring the retardation angle δ of a sample of known thickness d, it is possible to

arrive at the birefringence ∆n of the sample. Furthermore, it is useful to note that we can

treat the sample as a phase retarder for the purposes of calculating its effects on polarized

light.

4.2.1 Jones Calculations

The Jones calculations here provide a way to calculate the polarization state of the light

passing through the apparatus shown in Fig. 4.5.

I use a right-handed coordinate system where the x-axis is the horizontal, the y-axis is

the vertical, and the z-axis is the direction of propagation of light. To calculate the amplitude

of light passing through various optical components, I use Jones vectors and matrices, as

described in Ref. [28].

A Jones vector represents the polarization state of light, with the x- and y-components

of the vector each equal to the complex amplitude of the electric field in that direction. A

Jones matrix represents an optical component that transforms the polarization state of light.

In general, a retarder with the slow axis horizontal is represented by the Jones matrix

eiδ/2

[
1 0

0 e−iδ

]
,

and a retarder with the slow axis vertical is represented by the Jones matrix

e−iδ/2

[
1 0

0 eiδ

]

where δ is the retardation angle.
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Suppose I rotate some optical element, such as a retarder, by an angle θ. This is

equivalent to rotating the coordinate system by −θ, so the components of this rotated optical

element are equal to the unrotated optical element expressed in a frame rotated by −θ. For

example, a retarder with retardation δ oriented at some angle θ (where θ = 0◦ represents a

retarder with the slow axis horizontal) is represented by the matrix1

Mretarder(θ) = R(−θ)

(
eiδ/2

[
1 0

0 e−iδ

])
Rt(−θ)

=

[
cos θ − sin θ

sin θ cos θ

]
eiδ/2

[
1 0

0 e−iδ

][
cos θ sin θ

− sin θ cos θ

]

= eiδ/2

[
cos2 θ + e−iδ sin2 θ cos θ sin θ − e−iδcos θ sin θ

cos θ sin θ − e−iδcos θ sin θ sin2 θ + e−iδ cos2 θ

]
.

The apparatus is set up such that horizontally polarized light passes through the

liquid crystal, which is oriented with the director at θ = 45◦ to the horizontal. The light

then passes through a quarter wave plate with fast axis horizontal. I assume that the director

of the liquid crystal is the slow axis, and use the matrix for a retarder oriented at θ = 45◦,

MLC = eiδ/2

[
cos2 45◦ + e−iδ sin2 45◦ cos 45◦ sin 45◦ − e−iδcos 45◦ sin 45◦

cos 45◦ sin 45◦ − e−iδcos 45◦ sin 45◦ sin2 45◦ + e−iδ cos2 45◦

]

=
1

2
eiδ/2

[
1 + e−iδ 1− e−iδ

1− e−iδ 1 + e−iδ

]

=

[
cos δ

2
i sin δ

2

i sin δ
2

cos δ
2

]
,

to represent the liquid crystal. The quarter wave plate with fast axis horizontal and slow

axis vertical is represented by the matrix

MQWP = e−iβ/2

[
1 0

0 eiβ

]
, where β = π/2

= e−iπ/4

[
1 0

0 i

]
.

Then the state of the light that passes through the quarter wave plate is represented

1For background details on rotating matrices, see Appendix B.
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by

QWP output = MQWP MLC

[
1

0

]

= e−iπ/4

[
1 0

0 i

][
cos δ

2
i sin δ

2

i sin δ
2

cos δ
2

][
1

0

]

= e−iπ/4

[
cos δ

2

− sin δ
2

]
.

Only the mode of polarization is of interest here, so the amplitude of the light has been set

equal to one.

The entire apparatus is rotated by some angle α, and then the light passes through

a vertical polarizer with matrix

[
0 0

0 1

]
. Mathematically,

final state =

[
0 0

0 1

]
R(−α)

(
e−iπ/4

[
cos δ

2

− sin δ
2

])

=

[
0 0

0 1

][
cos α − sin α

sin α cos α

]
e−iπ/4

[
cos δ

2

− sin δ
2

]

= e−iπ/4

[
0

sin α cos δ
2
− cos α sin δ

2

]
.

Note that the final state is ~0 whenever α equals δ
2

+ pπ, where p is any integer.

Hence, when the light is extinguished, the angle α that the apparatus has been rotated

is equal to δ
2

+ pπ. In conclusion, if I know the integer p, then rotating the apparatus so as

to extinguish the light gives the retardation of the liquid crystal by the formula

δ = 2(α− pπ),

or, in degrees,

δ = 2(α− p 180◦). (4.3)

Combining equations (4.2) and (4.3) gives an equation for analyzing the data and so I was

able to begin taking measurements.
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Figure 4.3: The path of light in an empty cell. Light may pass through the glass or
it may be reflected some number of times. Constructive interference occurs when
half-waves of light fit exactly between the top and bottom pieces of glass. Shown
here are two possible paths, with the lower path one wavelength longer than the
upper path. There are two 180◦ phase shifts such that the rays following the two
paths are in phase with each other.

4.2.2 Procedure for Birefringence Measurements

I prepared glass cells as shown in Fig. 4.1, but before attaching the pieces of glass together

with Devcon epoxy, I rubbed the both glass pieces firmly with felt in the same direction on

the side of the glass that would be inside the cell, in order to promote alignment of the liquid

crystal. Solutions of Sunset Yellow are more difficult to align than typical thermotropic

liquid crystals. When I filled these cells with aqueous Sunset Yellow, the rubbing direction

determined the director. There were occasional scratches, but it was possible to avoid them

when taking measurements on the cell. The cells were sealed with PC-11 epoxy.

Prior to filling a glass cell with the liquid crystal sample, it was necessary to measure

the thickness of the cell. I used an optical method, measuring the transmission peaks in a

UV-Vis spectrophotometer. In the empty cell, we can assume that constructive interference

occurs when half-waves of light fit exactly between the top and bottom pieces of glass as

shown in Fig. 4.3, creating a trough on the absorption spectrum of the empty cell. If q0

half-waves fit in the cell, where q0 is an integer, then

q0
λ0

2
= d (4.4)

where d is the thickness of the cell and λ0 is the wavelength of the light. Each absorption

trough measured represented a different number of standing waves fitting in the glass cell,

so each peak was assigned a number, starting at q = 1. I let q0 be the number of half-waves

that fit inside the cell for the trough just below in wavelength the one labeled q = 1. Then

the data was fit to Eq. (4.4) in the form

λq =
2d

q0 − q
, (4.5)

giving d and q0 as fitting constants, as shown in Fig. 4.4. Hence I optically measured the
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Figure 4.4: Each peak in the absorption spectrum represents the standing waves
of the light fitting precisely within the cell, such that there must be an integer
number of half-waves. The wavelength λq of each peak is shown in the figure. By
using Eq. (4.5) to curve-fit the data, the optical thickness of this particular cell is
d = 10.72± .04 µm for this particular cell. This cell was then used for birefringence
measurements (see Fig. 5.2 on page 45).

thickness of the glass cell.

Now I was ready for birefringence measurements. I filled a felt-rubbed glass cell with

a solution of Sunset Yellow, and sealed the cell to slow the evaporation. I observed the cell

under a microscope and chose a well-aligned region without disclinations or air bubbles for

use in the birefringence measurement. I taped the cell of Sunset Yellow onto a heating stage

so that this well-aligned region was visible.

For birefringence measurements, I used a binocular microscope with a light detector

replacing one of the eyepieces. I used the other eyepiece to observe the sample during

the measurement, and to identify the temperature at which it reached coexistence. The

apparatus was set up as shown in Fig 4.5. For more details of the procedure, see Appendix C.

The retardation δ in degrees is given by Eq. (4.3), and the birefringence ∆n is given

by Eq. (4.2). But first, applying Eq. (4.3) requires one more piece of information: the value

of p.

4.2.3 Resolving the Ambiguity in Birefringence Measurements

Equation (4.3) is ambiguous. The light is extinguished whenever α equals δ
2

+ pπ for any

integer p, where p represents the number of half-rotations of the sample. By picking a differ-
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633-nm filter

light source

rotating microscope stage

polarizer B

heating stage containing sample

polarizer A (internal)

eyepiece and light detector

quarter wave plate

y

b. a horizontal
polarizer

a. a monochromatic
light source

Figure 4.5: Two views of the apparatus for birefringence measurements on the
binocular microscope. Light passes through a 633-nm filter, then polarizer B, the
sample, and a quarter wave plate, which rotate together on the microscope stage.
The light then passes through a 10x objective lens and polarizer A before it is
detected by the light detector. One eyepiece is left in place for observation while
the other has been removed with a light detector taped in its place.
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ent value of p when analyzing the measurements of α, it is possible to shift all birefringence

measurements in increments of λ0

d
.

To narrow down p, I used a glass cell of smaller thickness d. Decreasing d had the

effect of increasing the increment size between possible values of ∆n for a given α measure-

ment. There was only one value for p for each sample that yielded a gradual decrease2 in

birefringence as the concentration was increased. This value of p was used for all measure-

ments.

4.3 Order Parameter

I found the order parameter S using Eq. (2.28) by measuring the absorption by the liquid

crystal of light polarized both parallel to and perpendicular to the director and by measuring

the index of refraction for light polarized both parallel to and perpendicular to the director

of the sample.

The procedure for measuring the absorption of the liquid crystal sample was as follows.

I assembled a felt-rubbed glass cell of optical thickness d = (10.415±64) µm, measured with

the UV-Vis spectrophotometer with the method described in section 4.2.2, and filled it in the

humidity chamber at 50◦C with 0.9500-M Sunset Yellow FCF. The cell was sealed with PC-

11 epoxy to avoid rapid evaporation. Measurements were taken two days after filling. During

the order parameter measurements, the sample was heated to 77◦C and never changed phase,

suggesting that the sample was in fact much more concentrated than it had been when it

was filled.

The apparatus is shown in Fig. 4.6. A light detector was placed over one ocular of

a binocular microscope. The polarizers were initially crossed. The cell was taped into a

heating stage, and the heating stage was placed under the microscope, between the crossed

polarizers. The heating stage was rotated until the director of the liquid crystal, pointing

in the direction the glass had been rubbed with felt, was parallel to the top polarizer. In

this orientation, the light detector measured a minimum of light passing through. The lower

polarizer was rotated by 90◦ so that the polarizers were now parallel.

With the 576-nm filter, the light measured was of low intensity, and it was necessary

to minimize extraneous light sources by turning off all lights in the laboratory and covering

the unused eyepiece. The detector had to be calibrated to ensure accuracy to within 1 nW.

The heating stage and liquid crystal sample were now rotated until the light was

maximized. The angle and the power of the light detected were noted. The stage and

2That is, a gradual increase in the absolute value of the birefringence.
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sample were then rotated by 90◦ and the power was noted. The sample was then heated and

the power was noted at those same two angles.

The procedure was repeated for a cell filled with pure water to establish a base when

no absorption is present, Awater base = 0. Then the absorption was calculated using3

A⊥ = log10

(
intensity of base⊥

intensity of sample⊥

)
and A‖ = log10

(
intensity of base‖

intensity of sample‖

)
.

It remained to determine n‖ and n⊥. The first step was to measure niso, the index of

refraction of isotropic aqueous Sunset Yellow FCF. I used an Abbe refractometer, a device

that uses total internal reflection to determine the index of refraction of an isotropic liquid.

In effect, I was using

sin θcrit =
n1

n2

where θcrit is the critical angle, n1 is niso, and n2 is a known index of refraction for glass in the

refractometer. The refractometer used a sodium lamp with light of wavelength λ = 589 nm,

so it was necessary to correct this measurement to find niso for 633-nm light. By focusing

the instrument, it was possible to measure n486 − n656, the difference between the indices

of refraction for light of wavelength 486 nm to that of light of wavelength 656 nm. From

this measurement, I followed the instructions in the refractometer manual to interpolate

niso for a light wavelength of 633 nm. This was measured at room temperature; I assumed

temperature changes wouldn’t change the value of niso substantially. Using a linear curve fit,

I could calculate the isotropic index of refraction for any concentration relatively close to my

measurements, including concentrations for which there exists no isotropic phase of Sunset

Yellow FCF at room temperature. I chose a concentration of 1.25 M as a good estimate for

the concentration of the sample whose absorption I had measured. At this point, there are

clearly a number of approximations and corrections involved in finding niso. Changing the

value of niso was found to have little effect on the value of S, so the approximations for niso

were quite reasonable.

Thus I had 633-nm wavelength values for niso and ∆n as it varied with temperature4.

What does it mean to extrapolate niso to a concentration and temperature where the dye is

in the liquid crystal phase, not isotropic? In the liquid crystal phase, there are two indices,

n⊥ and n‖, not one, but we would expect that some sort of average of these two indices

gives niso. It is necessary to take the average of a material property of the liquid crystal.

The permittivity ε defined in Eq. (2.19) is a material property, and so taking the average

3Power was measured whereas intensity is required to calculate the absorption, but the area of the light
detector remains constant, so the power measurements give the correct ratio.

4I used the measurements of ∆n from the 1.25-M data in Fig. 5.2.
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Figure 4.6: Two views of the apparatus for order parameter measurements.

41



has physical meaning. The average permittivity is

εavg =
ε‖ + 2ε⊥

3
(4.6)

where the average is taken over the three dimensions, with the two perpendicular directions

assumed to be equal. It is straightforward to convert this to an equation for the more-easily

measured index of refraction. Let c be the speed of light in vacuum and let v be the speed

of light in the material. Recall that c = (ε0µ0)
−1/2 and v = (εµ0)

−1/2. But since n ≡ c
v
, we

have n2 = ε
ε0

. Then Eq. (4.6) becomes

n2
iso =

n2
‖ + 2n2

⊥

3
.

Combining this with Eq. (4.1) and applying the quadratic formula5 gives

n‖ = 2
3
∆n +

√
−2

9
∆n2 + n2

iso

n⊥ = −1
3
∆n +

√
−2

9
∆n2 + n2

iso,
(4.7)

providing a way to measure n‖ and n⊥, and so, by Eq. (2.28), I arrived at S as it varies with

temperature.

5The positive square root is chosen because n‖ and n⊥ are expected to be close to positive niso.
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Chapter 5

Experimental Results

5.1 Phase diagram

The Sunset Yellow FCF phase diagram shown in Fig. 5.1 illustrates how the phase of aqueous

Sunset Yellow varies with temperature and concentration.

While the heating stage was ramping up or down, the sample of Sunset Yellow did not

quite keep up with the temperature of the stage. Temperatures measured while heating were

higher than temperatures measured while cooling. Each data point on the phase diagram

actually represents two measured data points: the top of the error bar and the bottom of the

error bar. The top of the error bar is the temperature of the heating stage when the solution

changed phase while heating, whereas the bottom of the error bar is the temperature of the

heating stage when the solution changed phase while cooling. I assumed that the average of

these two points was a more accurate measurement of the phase transition temperature.

5.2 Birefringence

The results from the birefringence measurements are shown in Fig. 5.2. The ambiguity in

Eq. (4.3) made it difficult to determine exactly what the birefringence was, since at first it

wasn’t clear which p to use in analyzing the data. However, this was resolved. First, as a

substance is heated, the disorder will increase, so the anisotropy will decrease and hence I

expect the absolute value of the birefringence to decrease. Since the curves in Fig. 5.2 all

curve upwards, the birefringence must be negative. A material with negative birefringence

is said to be negative uniaxial. Then, as described in section 4.2.3, I measured α for a thin

cell, with an optical thickness of 4.7 µm. This placed ∆n in the region of -0.07 to -0.11.

For the thinner cell, I used a commercial cell. The glass of the commercial cell had
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Figure 5.1: The phase diagram for Sunset Yellow FCF shows how the phase of the
solution depends on the concentration and the temperature. The linear curve-fit
is for convenience; it is not expected that the curve appears linear on larger scales.
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Figure 5.2: Each of the five birefringence curves shows how the birefringence of
aqueous Sunset Yellow changes as it is heated. The data were taken for nematic
samples, except the last data point on each curve, which was taken after the
sample had reached coexistence. There appears to be a linear relation between the
temperature at which a sample of a given concentration reaches coexistence (which
gives the concentration) and the birefringence at that temperature, as shown by the
line drawn on the figure. Two cells were used for these measurements: a 10.7-µm
homemade felt-rubbed cell and a 4.7-µm commercial cell with (0.94-M solution).
The concentrations shown are calculated from the phase transition temperature
and Fig. 5.1.
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been coated with a polymer and rubbed to promote alignment of the director. The dye

solution didn’t flow easily into the cell, so I used a vacuum to draw the solution into the cell,

and used a concentration that was isotropic at room temperature. After sealing the cell, I

waited ten days for water to slowly evaporate through the epoxy seal, so that the sample

inside the cell became more concentrated, until it passed through the concentration where

its phase changed to a liquid crystal.

I observed the hexagonal M phase with herringbone texture in samples that had

become more concentrated through evaporation. No measurements were taken of these

samples.

5.3 Order Parameter

The index of refraction of isotropic Sunset Yellow FCF is shown in Fig. 5.3 as a function of

concentration. A linear curve fit of this plot is used to approximate niso at a concentration

of 1.25 M. Once I correct for variation in index due to wavelength, niso = 1.47 ± 0.01.

Combining this value of niso with the birefringence ∆n (for the 1.3-M sample in Fig. 5.2) as

a function of temperature, Eq. (4.7) gave n‖ and n⊥. Then the absorption data and the index

of refraction data yield the order parameter, shown in Fig. 5.4. This is the order parameter

of the molecules Smolec, as noted in section 2.2.3. The order parameter of the aggregate Sagg

is calculated in section 6.1.
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Chapter 6

Discussion

6.1 Model

Both the result of negative birefringence measurements, and the result of negative order pa-

rameter of the molecules independently suggest that the extraordinary index ne = n‖, where

n‖ is the index of refraction for light polarized parallel to the director, is the lower index of

refraction by equations (4.1) and (2.28). For liquid crystals with a nitrogen-nitrogen double

bond, the nitrogen-nitrogen double bonds dominate in the birefringence measurements. Sim-

ilarly, the order parameter measurements were using absorption due to the nitrogen-nitrogen

double bond. This can be understood qualitatively by considering the electron orbitals of

the π bond between the two nitrogen atoms, as shown in Fig. 6.1. An electric field pointing

parallel to the bond, such as the electric field of light polarized parallel to the bond, will

accelerate the electron, whereas an electric field pointing perpendicular to the bond, such as

that of light polarized perpendicular to the bond, will not be able to accelerate the electron

as much, because the electron is unlikely to leave the orbital shown. Hence light polarized

perpendicular to the bond will pass through with less interaction with the molecule than

light polarized parallel to the bond, and the index of refraction n⊥N=N for light polarized

perpendicular to the nitrogen-nitrogen double bond is lower than the index n‖N=N for light

polarized parallel to the nitrogen-nitrogen double bond.

Therefore, the negative birefringence and the negative molecular order parameter

each indicate that the nitrogen-nitrogen double bonds of the molecule are perpendicular

to the long axis of the aggregate on average, as shown in Fig. 6.2. The figure shows the

molecules all pointing in the same direction. X-ray measurements have shown that there is

one molecule on each level of the stack [21]. The molecules are expected to lie flat in each

level of the stack, but the molecules could be arranged in a number of ways.

The order parameter shown in Fig. 5.4 is Smolec, or equivalently SN=N, the order
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Figure 6.1: A π bond, as found between the two nitrogen atoms at the center of
the Sunset Yellow FCF molecule. The nitrogen nuclei are shown with the electron
cloud characteristic of a π bond. The double bond consists of two electrons, one in
a σ bond (not shown) and one in a π bond. This second electron has the highest
probability density of being observed in the areas shown. Note that the electron
has greater freedom to move parallel to the bond than perpendicular to the bond.
This influences its interactions with electromagnetic radiation polarized in this
direction as explained in the text.
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Figure 6.2: A model of aggregated molecules. The negative birefringence of aque-
ous Sunset Yellow is evidence for a general model where the molecules aggregate
with the nitrogen-nitrogen double-bond of each molecule perpendicular to the long
axis of the aggregate. Each molecule (see Fig. 3.1) is represented by its nitrogen-
nitrogen double bond. It is not known what the orientation of the N=N bond
within the horizontal plane.
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Figure 6.3: If I assume that the nitrogen-nitrogen double bonds are perpendicular
to the long axis of the aggregate, as suggested by the model, then I can calculate
the order parameter of the aggregate from the order parameter of the nitrogen-
nitrogen double bonds.

parameter of the nitrogen-nitrogen double bonds, and thus of the molecules, rather than the

order parameter Sagg of the elongated aggregates. Based on the model shown in Fig. 6.2, I

assume that the angle between the aggregate long axis and the N=N bond of a molecule in

the aggregate is θ2 = 90◦. Then by Eq. (2.29), the order parameter of the aggregate is

Sagg =
SN=N

P2(cos 90◦)
= −2 SN=N. (6.1)

This gives Fig. 6.3, the order parameter of the aggregate as a function of temperature. These

values of the order parameter and dependence on temperature resemble what one finds in

thermotropic liquid crystals.

6.2 Comparison of Experimental Results to Theoreti-

cal Phase Diagram

The theoretical phase diagram shown in Fig. 2.3 suggests that the slope of the transition

curves should be 56◦C/M for the isotropic-coexistence curve and 50◦C/M for the coexistence-
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nematic curve. The experimental results, shown in Fig. 5.1, show that the slopes are

177◦C/M and 158◦C/M, respectively. Hence the theory and the experiment disagree by

a factor of 3 for the slope. The width of the coexistence region of the theoretical phase

diagram is 25% larger than the width of the experimental phase diagram. The theoretical

phase diagram and the experimental results agree that the slope of the isotropic-coexistence

curve is higher than the slope of the coexistence-nematic curve. Given the simplicity of the

theory, the fact that it applies to dilute solutions, and the fact that Onsager’s result is for

rods of a single length to width ratio, this shows that the basic behavior of the system is

predicted with the most simple theory possible.

6.3 Work of others

6.3.1 Phase Diagram

Compared to the drug DSCG, Sunset Yellow undergoes a transition from the isotropic to

the nematic phase at higher concentrations [7]. A comparison to Robert J. Luoma’s dis-

sertation [5] shows that the phase diagram I plotted agrees with previous measurements of

Sunset Yellow FCF. The slope of the isotropic-coexistence curve in Fig. 5.1 is within 4%

of the slope of Luoma’s curve. In Fig. 5.1, the coexistence region occurs at approximately

a 0.1 M higher concentration than Luoma’s diagram. This is probably due to a different

sample purity, water content of the solid, or amount of evaporation during filling.

6.3.2 Birefringence

Very recently, Shiyanovskii et al. [20] have reported that for DSCG, ∆n/(ne +no) = −0.006.

For Sunset Yellow ∆n ∼ −0.1, n‖ ≈ 1.42, and n⊥ ≈ 1.53, so that ∆n/(ne + no) ∼ −0.03.

This suggests that the birefringence of Sunset Yellow is approximately 5 times that of DSCG.

6.3.3 Index of Refraction

Luoma measured the isotropic index of refraction with an Abbe refractometer and found

niso = 1.334+0.363 Φ, where Φ is the volume fraction [5, p. 31]. Using Eq. (2.11) to convert

from volume fraction to concentration, Luoma’s result is approximately niso = 1.334+0.117 c,

where c is the concentration in molars. In Fig. 5.3, my results are niso = 1.33 + 0.11 c. This

slope differs by 5% from Luoma’s slope, likely due to uncertainty in the concentration of the

solutions.
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6.3.4 Order Parameter

Hui and Labes [9] measured the order parameter of the bonds in DSCG and found values

ranging from -0.071 to -0.149, depending on the bond measured. The order parameter of

the N=N bond of Sunset Yellow, shown in Fig. 5.4, is approximately -0.35. If the molecules

form a complicated structure and the bond in different molecules of DSCG makes lots of

angles with the long aggregate axis, then it could lead to a small value as compared to the

order parameter of Sunset Yellow’s nitrogen-nitrogen double bond.

Goldfarb et al. [8] report that the order parameter of the aggregates of DSCG is quite

high, but do not give specific values.

53



Chapter 7

Conclusions

I made some of the first fundamental measurements on an aggregated dye liquid crystal. The

birefringence and order parameter measurements point to a model in which the nitrogen-

nitrogen double bonds of the molecules are perpendicular to the long axis of the aggregate.

Further research may show that other aggregated dye liquid crystals have similar or different

structures.
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Appendix A

Mathematica Calculations for the

Statistical Mechanics of Aggregation

The following Mathematica program was helpful in the calculations of the Lagrange multi-

plier λ, the number of aggregates of i molecules per volume νi, and the average number of

molecules in an aggregate 〈n〉 in section 2.1.1.

Set the concentration in Molars.

In[1]:= cm := 1.0

Set the temperature in degrees Celcius.

In[2]:= TC := 49.9

Now, with a concentration  and a temperature,  it is possible to calculate l,ni , and

<n> = avgn.  First convert to convenient units: Kelvin and mol/m3
.

In[3]:= T = TC + 273.15

Out[3]= 323.05

In[4]:= c = cm * 1000

Out[4]= 1000.

In[5]:= Mw := 0.45238

In[6]:= r := 1400

In[7]:= F =
Mw c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Mw c + r

Out[7]= 0.244216

In[8]:= b := 4.5 µ 10-28

In[9]:= k := 1.38065 µ 10-23

In[10]:= h := 6.62607 µ 10-34

In[11]:= e := 8.67 µ 10-20

In[12]:= y =
F ‰eêHk TL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

b H 2 p r b k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

h2
L
3ê2

 T3ê2

Out[12]= 18.6256

As shown in Fig. 2.1, we wish to solve for x, given y.  Mathematica's  FindRoot

function does this easily.   For efficiency, the sum stops after i = 500; this is valid

because X must be small so that the series converges for finite y.

Calculating Lambda3.nb 1
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In[7]:= F =
Mw c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Mw c + r

Out[7]= 0.244216

In[8]:= b := 4.5 µ 10-28

In[9]:= k := 1.38065 µ 10-23

In[10]:= h := 6.62607 µ 10-34

In[11]:= e := 8.67 µ 10-20

In[12]:= y =
F ‰eêHk TL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

b H 2 p r b k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

h2
L3ê2  T3ê2

Out[12]= 18.6256

As shown in Fig. 2.1, we wish to solve for x, given y.  Mathematica's  FindRoot

function does this easily.   For efficiency, the sum stops after i = 500; this is valid

because X must be small so that the series converges for finite y.

In[13]:= xx = FindRootAy == ‚
i=1

500

i5ê2 Xi, 8X, .01, 0, 1<E

Out[13]= 8X Ø 0.54271<

In[14]:= x = Hxx@@1DDL@@2DD
Out[14]= 0.54271

The Lagrange multiplier l is easily calculated from x.

In[15]:= l =

eÅÅÅÅÅÅ
k T

- Log@xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

b

Out[15]= 4.45551 µ 1028

In[16]:= mi@i_D := i r b

In[17]:= L@i_D :=
h

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 p mi@iD k T

Calculating Lambda3.nb 1
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In[18]:= n@i_D = L@iD-3
 ‰- eêHk TL ‰i H e

ÅÅÅÅÅÅ
k T

- l bL

Out[18]= 2.91374 µ 1025 ‰
-0.61118 i i3ê2

The average  number  of  molecules  in  an  aggregate.    For  efficiency,  the sum

stops after i = 500; this is valid because the value of ni  is very small for i > 500.

In[19]:= avgn =
F

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
b ⁄i=1

500
n@iD

Out[19]= 4.11855

In[20]:= ListPlot@Table@8i, n@iD<, 8i, 0, 13, 1<D,

AxesLabel Ø 8"i", "ni"<, PlotStyle -> PointSize@0.015DD

2 4 6 8 10 12
i

5µ 10
24

1µ 10
25

1.5µ 10
25

2µ 10
25

ni

Out[20]= Ü Graphics Ü

This graph of ni  versus i shows the distribution of aggregate lengths in an aque-

ous solution of Sunset Yellow FCF of this concentration and temperature.

In[21]:= avgn F

Out[21]= 1.00581

Calculating Lambda3.nb 1
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Appendix B

Rotating Matrices

If a vector A is represented by

[
Ax

Ay

]
, then the Jones vector in a rotated frame is

[
A′

x

A′
y

]
= R(−θ)

[
Ax

Ay

]
=

[
cos θ − sin θ

sin θ cos θ

][
Ax

Ay

]
.

Similarly, [
B′

x B′
y

]
=
[
Bx By

]
Rt(−θ) =

[
Bx By

] [ cos θ sin θ

− sin θ cos θ

]
.

So if a matrix M is formed by A and B,

M =

[
Ax

Ay

] [
Bx By

]
,

it will transform as

M ′ = R(−θ) M Rt(−θ)

where the rotation matrix is given by

R(−θ) =

[
cos θ − sin θ

sin θ cos θ

]
.
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Appendix C

Details of the Procedure for

Birefringence Measurements

The following provides the details for setting up the apparatus for birefringence measure-

ments, shown in Fig. 4.5.

I screwed polarizer B onto the rotating microscope stage, and rotated it so that it

was crossed with polarizer A above the microscope stage. Then I fixed polarizer B in place

by tightening a screw on the microscope stage. I placed the heating stage containing the

sample of Sunset Yellow on polarizer B on the microscope stage. I positioned the heating

stage so that the director of the liquid crystal sample was parallel to polarizer B, verifying

that the light passing through polarizer B, the sample, then polarizer A was extinguished

with the heating stage at this angle. I placed a quarter wave plate on top of the heating

stage, and aligned the fast axis with polarizer B. As before, the light passing through was

extinguished.

I rotated the heating stage 45◦ to the right. Because I had chosen this particular

region of the cell, I assured that the heating stage didn’t drift too far to the side during

rotation by resting my fingers on the microscope stage as I turned the heating stage, and

watching the sample through the microscope while rotating. Then I taped the heating stage

onto polarizer B. The quarter wave plate had rotated with the heating stage, and I rotated

it 45◦ to the left so that it was parallel with polarizer B as before.

Now polarizer B was crossed with polarizer A, the director in the sample was rotated

45◦ to the right from polarizer B, and the fast axis of the quarter wave plate was parallel with

polarizer B. I untightened the screw holding the microscope stage and polarizer B so that it

could rotate freely. The heating stage and the quarter wave plate rotated with polarizer B,

while polarizer A remained fixed.

I placed a 633-nm filter over the light source, and turned off the lights in the room
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to minimize other sources of light. I rotated the microscope stage along with polarizer B,

the sample in the heating stage, and the quarter wave plate, and I observed the angle α

where the light intensity was lowest on an oscilloscope measuring the output from the light

detector. Since it was difficult to identify the exact angle that minimized the light intensity,

I would rotate the stage to two angles on either side of α that had the same light intensity

and I would take the average of those two angles to find a value for α. I would then repeat

this with two other angles on either side of α, and both averaged values for α were used.

61



Bibliography

[1] P. J. Collings and M. Hird. Introduction to Liquid Crystals: Chemistry and Physics.

Taylor & Francis, Bristol, PA, 1997.

[2] J. E. Lydon. Chromonic liquid crystal phases. Current Opinion in Colloid & Interface

Science, 1998(3):458–466, 1998.

[3] P. K. Maiti, Y. Lansac, M. A. Glaser, and N. A. Clark. Isodesmic self-assembly in

lyotropic chromonic systems. Liquid Crystals, 29(5):619–626, 2002.

[4] J. E. Lydon. Chromonics. In D. Demus, J. Goodby, G. W. Gray, H.-W.Spiess, and

V. Vill, editors, Handbook of Liquid Crystals, volume 2B, chapter XVIII, pages 981–

1007. Willey-VCH, New York, 1998.

[5] R. J. Luoma. X-ray scattering and magnetic birefringence studies of aqueous solutions

of chromonic molecular aggregates. PhD thesis, Brandeis University, 1995.

[6] J. S. Cox, G. D. Woodard, and W. C. McCrone. Solid-state chemistry of cromolyn

sodium (disodium cromoglycate). J. Pharm. Sci., 60(10):1458–65, 1971.

[7] N. H. Hartshorne and G. D. Woodard. Mesomophism in the system disodium

chromoglycate-water. Molecular Crystals and Liquid Crystals, 23:343–368, 1973.

[8] D. Goldfarb, Z. Luz, N. Spielberg, and H. Zimmermann. Structural and orientational

characteristics of the disodium/cromoglycate-water mesophases by deuterium nmr and

x-ray diffraction. Mol. Cryst. Liq. Cryst., 126:225–246, 1985.

[9] Y. W. Hui and M. M. Labes. Structure and order parameter of a nematic lyotropic

liquid crystal studied by ftir spectroscopy. J. Phys. Chem., 1986(90):4064–4067, 1986.

[10] D. Perahia, D. Goldfarb, and Z. Luz. Sodium-23 NMR in the lyomesophases of disodi-

umcromoglycate. Mol. Cryst. Liq. Cryst., 108:107–123, 1984.

62



[11] J. E. Turner. Lyotropic discotic dye/water systems. PhD thesis, University of Leeds,

1988.

[12] J. E. Turner and J. E. Lydon. Chromonic mesomorphism: The range of lyotropic

discotic phases. Mol. Cryst. Liq. Cryst. Letters, 5(3):93–99, 1988.

[13] D. Perahia, Z. Luz, and E. J. Wachtel. N.M.R. and X-ray diffraction of the 7,7’-

disodiumcromoglycate-water lyomesophases. Liquid Crystals, 2(4):473–489, 1987.

[14] D. Perahia, E. J. Wachtel, and Z. Luz. NMR and X-ray studies of the chromonic

lyomesophases formed by some xanthone derivatives. Liquid Crystals, 9(4):479–492,

1991.

[15] G. J. T. Tiddy, D. L. Mateer, A. P. Ormerod, W. J. Harrison, and D. J. Edwards.

Highly ordered aggregates in dilute dye-water systems. Langmuir, 1995(11):390–393,

1995.

[16] C. Ruslim, D. Matsunaga, M. Hashimoto, T. Tamaki, and K. Ichimura. Struc-

tural characteristics of the chromonic mesophases of C.I. Direct Blue 67. Langmuir,

2003(19):3686–3691, 2003.

[17] T. Schneider, A. Smith, and O. D. Lavrentovich. Imaging oriented aggregates of ly-

otropic chromonic mesogenic dyes by atomic force microscopy. Mat. Res. Soc. Symp.,

636:D11.8.1–D11.8.5, 2001.
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