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Introduction

Positrons are a useful and non-destructive tool for probing materials; their current
uses range from detecting changes in weapons materials [1] to determining whether
a diamond is natural or synthetic [2]. Because the positron is the antiparticle of the
electron, there are no positrons present in ordinary matter, and it is possible to closely
determine what happens to positrons sent into a material. Positron spectroscopy can
be used to resolve small defects that other probes, such as electrons, cannot distinguish.
For example, if stainless steel is strained less than 10% of the way to failure, this early
fatigue damage cannot be detected by standard nondestructive evaluation techniques,
but a 210 ps positron lifetime signal increases in intensity from 15% to over 70% due to
the increased number of defects [3]. Details about the solid structure are determined
from the gamma rays released when the positron annihilates with an electron in the
solid.

There are many unanswered questions about the behavior of positrons in solids,
and, correspondingly, experimentalists sometimes use inaccurate models to interpret
their data. This is where my thesis comes in. Because the problem of a positron in
a crystal is too complex for an analytic solution, we have turned to a computational
technique known as path-integral Monte Carlo (PIMC) to help determine the positron’s
behavior. We have developed code to model positronium (Ps), the bound state of a
positron with an electron, in an external potential. This is unlike previous computer
models of positrons in solids in that the positron and electron are simulated as having
independent degrees of freedom, using their exact Coulombic propagator. This allows
us to measure characteristics of the Ps atom that could not previously be studied.

Methods

In my thesis, I remind the reader that the partition function needed to calculate thermal
averages for a quantum particle is mathematically equivalent to the partition function
for a classical ring polymer. In other words, we can represent the positron and electron
as two closed chains of “beads,” as illustrated in Figure 1, where each bead represents
the probability of finding the particle at that location. The springs between each pair
of beads have spring constant mP

β2~2 , where m is the mass of the quantum particle, P is
the number of beads (typically in the thousands), and β is the inverse temperature.

In addition to the harmonic potential due to the springs, the potential felt by each
bead is determined by the external potential and the Coulombic interaction. The
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Figure 1: Models of quantum particles treated using PIMC. Left: sin-
gle positron. Right: positron and electron. Thick black lines represent
Coulomb interactions.

external potential felt by a bead at position r is V (r)
P , where V (r) is the potential that

the quantum particle would feel at that location due to the surrounding atoms. To
determine the external potential for the positron, we use a technique called density
functional theory (DFT). The external pseudopotential felt by the electron is difficult
to calculate, and we use a phenomenological form based on experimental data.

The simulation is performed using the standard Metropolis algorithm [4]: we choose
states with probability proportional to their thermal likelihood, and then weight them
equally as we calculate thermodynamic averages. We use this algorithm to move small
sections of each chain for about a million passes, calculating quantities such as the
probability density function P (r) (which gives the probability of finding the electron
and positron a distance r apart), the pair correlation function g(r) (which gives the
probability of finding a solid atom located a distance r from the positron), and the Ps
energy and lifetime.

Once a PIMC code for Ps was written and debugged, we chose to study a highly
idealized environment: spherical pores of realistic sizes. This work led to a publication,
Ref. [5]. Proceeding to the task of modeling a more realistic solid, we chose to simulate
solid argon (Ar) because of the presence in the literature of both experimental and
theoretical results for this solid [6-12]. Also, since finding a good pseudopotential felt
by the electron is one of the most challenging aspects of this method, we decided to
employ our new simulation method in a system in which this potential has already
been studied in detail.

Results

There are a number of disputed facts about Ar that we have addressed. For instance,
some researchers have attributed the longest lifetime of Ps in Ar to the self-trapping
of Ps in voids [9]. Others, however, point out that the long lifetime is observed even at
temperatures where there should be no voids [10]. We studied face-centered cubic (fcc)
Ar and Ar with a monovacancy (for which we removed a single atom from the middle
of each block of eight unit cells). We found no dramatic change in the lifetime or in
the pair correlation function (Figure 2), indicating that the Ps atom does not fall into
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the available void. Rather, due to the polarization potential of our model, it remains
close to the Ar atoms. This is a significant result because it contradicts the standard
assumption about the behavior of Ps near a vacancy.

Figure 2: Pair correlation function g(r) for Ps in Ar. Circles: Ps in solid
Ar. Crosses: Ps in Argon with a monovacancy.

When Ps is placed in a solid, the change in the probability density where the relative
coordinate between the particles is zero is described by κ, the “internal contact density”
of Ps:

κ =
|ψ(0)|2

|ψfree(0)|2
. (1)

We can write the total annihilation rate of either state as

Γ = κΓ0 + Γp.o., (2)

where Γ0 is the self-annihilation rate of free Ps and Γp.o. is the rate of “pick-off”
annihilation due to other electrons in the solid. We found that the Ps wavefunction is
“squeezed” inside solid Ar, as seen in Figure 3, which shows P (r)/r2 = 4π|ψ(r)|2. (You
can note in this figure the excellent agreement of our numerical estimate of |ψfree(0)|2
with theory.) From the curve fit parameters we calculate the internal contact density
of Ar to be κAr = 1.25 ± 0.02. While this makes sense given our potential, κ ≤ 1 in
all the materials in which it has thus far been measured [13, 14]. To date, we have
found no experimental data on κ in Ar with which we can compare our own, interesting
result. It turns out that the hyperfine energy splitting between o-Ps and p-Ps scales
with κ [15], and can be determined in materials using a technique called “magnetic
quenching.” Future investigations in our group will hopefully involve simulating Ps in
α-SiO2, in which κ has been measured to be about 0.3 [14].
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Figure 3: Probability density function. Solid line: 1S exact theory. Di-
amonds: Free Ps simulation. Circles: Ps in solid Ar. Crosses: Ps in Ar
with a monovacancy. Lines are curve fits: results for free Ps were fit to
0.50e−1.00r, the results for Ps in solid Ar were fit to 0.63e−1.05r, and the
results for Ps in Ar with a monovacancy were fit to 0.62e−1.05r, where all
uncertainties are in the last digit.
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