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Response of an Oscillator to an Impulse and Green’s Method 
 

Green’s Method can be used to solve linear inhomogeneous differential equations, such 

as the equation describing the motion of a damped oscillator: 
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Since this equation is linear, it obeys the principle of superposition: if we have two solutions, 

x1(t) and x2 (t) , to two different forcing functions, )(1 tF  and )(2 tF , then )(1 tx  + )(2 tx  is a 

solution to the forcing function )(1 tF  + )(2 tF . 

 We can always write )(tF  as a Fourier series, but then our solution is in the form of an 

infinite sum. Green discovered a clever way to express )(tF  in terms of the delta function that 

results in a nice analytic solution. 

Green’s Function, G(t, ′ t ), is defined as the solution to the ODE when the forcing 

function is equal to the delta function. In the case of the damped oscillator, 
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To determine G, first consider the exact response of the system to the Heaviside step function, 
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in which a is acceleration. The homogeneous solution (set a = 0) is a cosine and sine sum with 

arbitrary constants, and the inhomogeneous solution is just a constant, 2
0/ ωa . The constants can 

be found by applying initial conditions 0)0( =x  and 0)0( =x& , giving the solution: 
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By subtracting a step function at t = τ , we get an impulse function of width τ  and height a.  
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If we keep the product aτ  constant as we let τ → 0, we get the response to a delta function (see 

M&T p. 143-144): 
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We can express any forcing function as the sum of impulse functions. If we define Fn (t) as 

an (t) ⋅m  when tn < t < tn+1 , where τ = tn+1 − tn , we can write 
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We know the solution for the nth impulse (it acts over interval τ = tn+1 − tn ), so we can sum these 

to find the solution to the original forcing function: 
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0 , tN < t < tN +1 . 

Taking the limit as τ → 0 and writing tn  as ′ t , we get the integral 
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and when we say that 
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we have 
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Note that while Equation 3 is always true, Equation 2 is specific to this problem: a linear 

oscillator initially at rest at equilibrium. The Green’s function contains the initial conditions, so 

putting any forcing function into Equation 3 will give you an exact solution to the problem. 

 Though it may be difficult to calculate the integral (as you will see in problem 3-42), 

Green’s Method always gives you a solution. 


