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The Born Approximation (Time-Dependent Description)

We consider our incoming waves as plane waves, |~pi〉 , and we want to evalulate the scattering S
matrix, which shows what happens to our incoming waves after scattering. The approximation is
that the scattering potential V can be treated as a perturbation, allowing us to use Fermi’s Golden
Rule:
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The incoming probability rate is
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in the ~pi direction, so
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We can now obtain the differential cross section:
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where ~~q = ~pf − ~pi. As derived in Shankar, q = 2k sin(θ/2). We can now identify f(θ, φ) as
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Note that this is the same as the result obtained in the time-independent description of the Born
approximation; in fact, the two descriptions agree to all orders.


