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Field Quantization

Our general approach for quantizing the electromagnetic field is to find classical conjugate
coordinates and their conoical commutation relation. By one of Shankar’s postulates of quantum
mechanics (see Section 4.1), the quantum hamiltonian, Ĥ, is simply the classical hamiltonian, H,
with the conjugate coordinates transformed to quantum operators.

We start with the four coordinates describing the potential, (φ(~r), ~A(~r)), where we impose the
Coulomb gauge so that ∇ · ~A = 0 and φ = 0. To find the momenta conjugate to these coordinates,
we must find the Lagrangian. Remember that the energy of a field is given by

u =
1

8π

∫ ∣∣∣ ~E∣∣∣2 +
∣∣∣ ~B∣∣∣2 d3~r. (1)

Since ~E = −1
c
∂ ~A
∂t is a time derivative, like a kinetic energy, and ~B = ∇× ~A is a spatial derivative,

like a potential energy, we guess at the form of the Lagrangian:

L =
1

8π

∫ ∣∣∣ ~E∣∣∣2 − ∣∣∣ ~B∣∣∣2 d3~r

=
1

8π

∫ ∣∣∣∣∣−1
c

∂ ~A

∂t

∣∣∣∣∣
2

−
∣∣∣∇× ~A

∣∣∣2 d3~r, (2)

where we have imposed the Coulomb gauge to eliminate φ. We can now find the momentum
conjugate to ~A, which we will label ~Π:

~Π =
∂L

∂~̇A
=

~̇A

4πc2
=

~E

4πc
. (3)

By writing Eq. (1) in terms of these conjugate coordinates, the classical Hamiltonian becomes

H =
1

8π

∫ ∣∣∣−4πc~Π
∣∣∣2 +

∣∣∣∇× ~A
∣∣∣2 d3~r. (4)

We cannot simply quantize from here because there are additional constraints on ~Π and ~A that
render them noncanonical. Gauss’s law, ∇ · ~E = 0, implies that ∇ · ~Π = 0, and we still have the
Coulomb gauge constraint that ∇ · ~A = 0. We thus search for a smaller set of variables that have
these constraints built in.

We Fourier transform ~A and ~Π to relate their six real components to three complex components
of ~a in ~k space:

~A(~r) =
3∑

λ=1

∫ (
c2

4π2ω

) 1
2 [
a(~kλ)ε(~kλ)ei~k·~r + a∗(~kλ)ε(~kλ)e−i~k·~r

]
d3~k, (5)

~Π(~r) =
3∑

λ=1

∫
1
i

( ω

64π4c2

) 1
2
[
a(~kλ)ε(~kλ)ei~k·~r − a∗(~kλ)ε(~kλ)e−i~k·~r

]
d3~k. (6)



Here, ε(~ki) is perpendicular to ~k for i = 1, 2 and parallel to ~k for i = 3. The two constraints
can now be combined into the condition that a(~k3) = 0, which changes the summation indicies to
λ = 1, 2. We can now write the classical hamiltonian as

H =
2∑

λ=1

∫
ω
[
a∗(~kλ)a(~kλ)

]
d3~k. (7)

This is equivalent to a bunch of oscillators with coordinates p and q, which we turn into quantum
operators Q̂ and P̂ obeying[

Q̂(~kλ), P̂ (~k′λ′)
]

= i~{q, p} = i~δλ,λ′δ
3
(
~k − ~k′

)
. (8)

We then change variables to the raising and lowering operators, â† and â, in terms of which our
quantum hamiltonian is

Ĥ =
∑
λ

∫ [
â†(~kλ)â(~kλ) +

1
2

]
~ωd3~k. (9)

Note that â† and â correspond to the classical variables a∗/~1/2 and a/~1/2. Also note that in this
context, â† and â represent the creation and annihilation of photons. Acting on the field ground
state |0〉 with the lowering operator gives 0, but

â†(~kλ) |0〉 =
∣∣∣~kλ〉 , (10)

where
∣∣∣~kλ〉 is a state with momentum ~~k and energy ~ω . . . i.e., a photon.


