
Lisa Larrimore
Physics 114 - Seminar 14

Monte Carlo Simulation of the 2D Ising Model

The Metropolis Algorithm

We know that the expectation value of an observable A can be written as

〈A〉 =
∑
r Are

−βEr∑
r e
−βEr

, (1)

where Ar is the value of A for the state r. So given a system that has a discrete number of states, we
could, using a computer, calculate A for each state and weight these values by their Boltzman factors
to find the average A. This might be feasible for a system with a small number of states, but if we
have a 20×20 spin lattice interacting via the Ising model, there are 2400 states, so we cannot possibly
examine all of them.

What if we decide to just sample some of the states? How would we decide which ones? This is
where the “Monte Carlo” part comes in. Named for the Mediterranean casino town, a Monte Carlo
method is any algorithm that involves a pseudorandom number generator.

One (bad) way of using random numbers would be to randomly pick a lot of states, measure A
for each of them, and weight these values of A by their Boltzman factors. We might get close to the
right answer if we sampled a lot of states, but we would spend a lot of time calculating A for states
that contribute very little to the final result (an Ising lattice at very high temperature is unlike to be
in the state with all spins pointing in one direction).

Instead of sampling (measuring parameters like A for) a lot of states and then weighting them
by their Boltzman factors, it makes more sense to choose states based on their Boltzman factors and
to then weight them equally. This is known as the Metropolis algorithm, which is an importance
sampling technique. One pass through the algorithm is described here:

1. A trial configuration is made by randomly choosing one spin.

2. The energy difference of the trial state relative to the present state, δE, is calculated.

3. If δE ≤ 0, the trial state is energetically favorable and thus accepted. Otherwise, a random
number 0 ≤ η ≤ 1 is generated, and the new state is only accepted if exp(−βδE) > η. This
condition can be rewritten as −βδE > log η, which is what I used in the code.

Calculating Observables

We can obtain some qualitative information about our simulation by watching the spin array during
a simulation. I have written an IDL program, see_spins.pro, that allows us to do this. For high
temperatures, the spins remain randomly aligned after long periods of equilibration, whereas for low
temperatures, the spins end up pointing in mostly the same direction.

To get more quantitative results, we can measure the energy and the magnetization at each step
of the routine. Before we start taking statistics, we should allow the system to equilibrate for a long
time (my code equilibrates for nequil passes). We can then measure the magnetization by taking the
sum of all the spins in the lattice, and we can calculate the energy by determining the energy for each
spin and dividing by two for double counting.

What about the specific heat or susceptibility? There isn’t a good way to claculate a derivative of
the partition function in our code, but it turns out that the specific heat can also be written in terms
of the variance of the energy:

CV =
∂ 〈E〉
∂T

=− β

T

∂ 〈E〉
∂β

=
β

T

∂2 lnZ
∂β2

=
β

T

∂

∂β

(
1
Z

∂Z

∂β

)
=
β

T

[
1
Z

∂2Z

∂β2
− 1
Z2

(
∂Z

∂β

)2
]

=
β

T

[〈
E2
〉
− 〈E〉2

]
. (2)

Incidentally, this is known as the Fluctuation Dissipation Theorem.
Similarly, the magnetic susceptibility, χ, can be written in terms of the variance in the magneti-

zation:

χ =
∂ 〈M〉
∂H

=β
[〈
M2
〉
− 〈M〉2

]
. (3)

So by keeping statistics on E, E2, M , and M2, we can plot the energy, the magnetization, the
specific heat, and the magnetic susceptibility. On each of these graphs, each circle represents an
independent run of 100, 000 steps of equilibration and 100, 000 more steps of data taking.

Figure 1: The energy is a continuous function of temperature, which, as we
expect, increases as a function of T .

Figure 2: The magnetization drops off sharply near the critical temperature,
which, in our units where k = J = 1, is approximately 2.3.

Figure 3: The specific heat has a peak at the critical temperature.

Figure 4: The magnetic susceptibility has a sharp jump at the critical temper-
ature.

Codes

This FORTRAN 90 code generates statistics on energy, heat capacity, magnetization, and magnetic
susceptibility for a range of temperatures:

1 program ising ! 2D Monte Carlo Simulation of Ising Model

2
3 ! Lisa Larrimore, lisal@sccs.swarthmore.edu

4 ! 3 May 2002

5 ! Physics 114 Final Project

6
7 ! This program is adapted from the Ising Model program written in

8 ! BASIC by Elaine Chandler that appears on p. 184 of David Chandler’s

9 ! Introduction to Modern Statistical Mechanics.

10
11 ! The input parameters for this program are in "ising.in", and they

12 ! allow the size, length, and initial configuration of the simulation

13 ! to be changed. See comments in file.

14
15 ! This program has three output files:

16 !

17 ! "spin-array" Contains snapshots of the spin lattice at the end of

18 ! each temperature run (or throughout the middle of the

19 ! run, if only looking at one temperature). Can be

20 ! visualized with the IDL program see_spins.pro

21 !

22 ! "magnetization" Contains four columns: each temperature, the

23 ! average magnetization at that temp, the ave magnetizaion

24 ! squared at that temp, and the susceptibility.

25 !

26 ! "energy" Contains four columns: each temperature, the

27 ! average energy at that temp, the ave energy squared

28 ! at that temp, and the heat capacity.

29
30 implicit none

31
32 ! Variable declarations:

33 integer :: i, j, m, n, m2, n2 ! dummy integers

34 integer, allocatable :: A(:,:) ! matrix containing spins

35 integer :: nrows, ncols ! number of rows and cols of A

36 real :: temp, beta ! temperature, inverse temperature

37 integer :: ConfigType ! starting configuration type

38 integer :: npass ! number of passes for MC algorithm

39 integer :: ipass ! the current pass number

40 integer :: nequil ! number of equilibration steps

41 integer :: trial_spin ! values of changed spin

42 real :: high_temp ! starting temp for scan

43 real :: low_temp ! final temp for scan

44 real :: temp_interval ! interval between scan points

45 integer :: nscans ! number of scans (each at diff T)

46 integer :: iscan ! current scan number

47 logical :: MovieOn ! set to .true. to make movie of 1 temp

48 real :: deltaU ! change in energy between 2 configs

49 real :: deltaU1, deltaU ! energy changes for lattice gas

50 real :: log_eta ! log of random number to compare to

51 real :: magnetization ! magnetization of all spins in lattice

52 real :: magnetization_ave ! cumulative average magnetization

53 real :: magnetization2_ave ! cumulative average of mag. squared

54 real :: energy ! energy of all spins in lattice

55 real :: energy_ave ! cumulative average of energy

56 real :: energy2_ave ! cumulative average of energy squared

57 integer :: output_count ! # times things have been added to averages

58
59 print*, "________________MONTE CARLO 2D ISING MODEL________________"

60 print*, "Monte Carlo Statistics for 2D Ising Model with"

61 print*, " periodic boundary conditions."

62 print*, "The critical temperature is approximately 2.3, as seen on"

63 print*, " Chandler p. 123."

64
65 ! Read in input parameters from file "ising.in"

66 open(unit=11,file=’ising.in’,status=’old’,action=’read’)

67 read(11,*);read(11,*) nrows

68 read(11,*);read(11,*) ncols

69 read(11,*);read(11,*) npass

70 read(11,*);read(11,*) nequil

71 read(11,*);read(11,*) high_temp

72 read(11,*);read(11,*) low_temp

73 read(11,*);read(11,*) temp_interval

74 read(11,*);read(11,*) ConfigType

75 read(11,*);read(11,*) MovieOn

76 close(11)

77
78 ! Set the dimensions of the matrix of spin arrays. This program uses

79 ! periodic boundary conditions, so the first two rows and columns are

80 ! the same as the last two.

81 allocate(A(nrows+2,ncols+2))

82
83 ! Open output files:

84 open(unit=32,file=’spin-array’,status=’replace’,action=’write’)

85 write(32,*) nrows

86 write(32,*) ncols

87 nscans = int((high_temp - low_temp)/temp_interval) + 1

88 if (MovieOn) then

89 write(32,*) 51

90 write(32,*) 1

91 else

92 write(32,*) nscans

93 write(32,*) 2

94 endif

95
96 open(unit=33,file=’magnetization’,status=’replace’,action=’write’)

97 write(33,*) "temp ave_magnetization ave_magnetization^2 susceptibility"

98 open(unit=34,file=’energy’,status=’replace’,action=’write’)

99 write(34,*) "temp ave_energy ave_energy^2 C_v"

100
101 scan_loop: do iscan = 1, nscans

102 temp = high_temp - temp_interval*(iscan-1)

103 print*, "Running program for T =", temp

104
105 ! Initialize variables

106 beta = 1.0/temp

107 output_count = 0

108 energy_ave = 0.0

109 energy2_ave = 0.0

110 magnetization_ave = 0.0

111 magnetization2_ave = 0.0

112
113 ! Set up the initial spin configuration.

114 select case(ConfigType)

115 case(1) ! checkerboard setup

116 A(1,1) = 1

117 do i = 1, nrows+1

118 A(i+1,1) = -A(i,1)

119 enddo

120 do j = 1, ncols+1

121 A(:,j+1) = -A(:,j)

122 enddo

123 ! (note: the requirement that nrows and ncols are even is to

124 ! ensure that the first two rows/cols start out the same as the

125 ! last two)

126 case(2) ! interface

127 do i = 1, nrows+2

128 do j = 1, (ncols+2)/2

129 A(i,j) = 1

130 enddo

131 do j = (ncols+2)/2 + 1, ncols+2

132 A(i,j) = -1

133 enddo

134 enddo

135 case(3) ! unequal interface

136 do i = 1, nrows+2

137 do j = 1, (ncols+2)/4

138 A(i,j) = 1

139 enddo

140 do j = (ncols+2)/4 + 1, ncols+2

141 A(i,j) = -1

142 enddo

143 enddo

144 case default

145 print*, "Error! Check ConfigType parameter in ising.in"

146 stop

147 end select

148
149 ! Main loop containing Monte Carlo algorithm:

150 MC_passes: do ipass = 0, npass

151
152 ! If MovieOn is .true., write the spin array to an output every

153 ! npass/50 steps.

154 if ((MovieOn) .and. (mod(ipass,npass/50) == 0)) then

155 do i = 2, nrows+1

156 do j = 2, ncols+1

157 write(32,*) A(i,j)

158 enddo

159 enddo

160 endif

161
162 ! If ipass is greater than nequil (the number of equilibration steps),

163 ! calculate the magnetization and energy:

164 if (ipass > nequil) then

165 output_count = output_count + 1

166 magnetization = sum(A(2:nrows+1,2:nrows+1))/(ncols*nrows*1.0)

167 magnetization_ave = magnetization_ave + magnetization

168 magnetization2_ave = magnetization2_ave + magnetization**2

169 energy = 0.0

170 do i = 2, nrows + 1

171 do j = 2, ncols + 1

172 energy = energy - A(m,n)*(A(m-1,n)+A(m+1,n)+A(m,n-1)+A(m,n+1))

173 enddo

174 enddo

175 ! Divide the energy by the total number of spins to get the ave

176 ! energy per spin, and divide by 2 to account for double counting.

177 energy = energy/(ncols*nrows*2.0)

178 energy_ave = energy_ave + energy

179 energy2_ave = energy2_ave + energy**2

180 endif

181
182 ! Randomly choose a spin to change:

183 m = nint((nrows-1)*ran1(5) + 2) ! choose a random row

184 n = nint((ncols-1)*ran1(5) + 2) ! choose a random column

185 trial_spin = -A(m,n) ! trial spin value

186
187 ! Find change in energy (deltaU) due to trial move.

188 ! If exp(-beta*deltaU) > eta, where eta is random, accept move:

189 deltaU = -trial_spin*(A(m-1,n)+A(m+1,n)+A(m,n-1)+A(m,n+1))*2

190 log_eta = dlog(ran1(5) + 1.0d-10) ! random number 0-1 (+ tiny offset)

191 if (-beta*deltaU > log_eta) then

192 A(m,n) = trial_spin

193 if (m == 2) A(nrows+2,n) = trial_spin

194 if (m == nrows+1) A(1,n) = trial_spin

195 if (n == 2) A(m,ncols+2) = trial_spin

196 if (n == ncols+1) A(m,1) = trial_spin

197 endif

198
199 enddo MC_passes

200
201 ! Write final spin array to output file

202 if (.not. MovieOn) then

203 do i = 2, nrows + 1

204 do j = 2, ncols + 1

205 write(32,*) A(i,j)

206 enddo

207 enddo

208 endif

209 write(33,*) temp, abs(magnetization_ave/output_count), &

210 magnetization2_ave/output_count, &

211 beta*(magnetization2_ave/output_count - (magnetization_ave/output_count)**2)

212 write(34,*) temp, energy_ave/output_count, energy2_ave/output_count, &

213 (beta**2)*(energy2_ave/output_count - (energy_ave/output_count)**2)

214
215 enddo scan_loop

216
217 close(32)

218 close(33)

219 close(34)

220
221 print*, "Program ising.f90 complete!"

222 print*, "Look at ’spin-array’ with IDL program see_spins.pro"

223
224 contains

225
226
227 !_______RANDOM NUMBER GENERATING FUNCTION______!

228
229 double precision function ran1(idum)

230 implicit none

231 double precision :: r(97)

232 integer, intent(IN) :: idum

233 save

234 integer, parameter :: M1=259200,IA1=7141,IC1=54773

235 real, parameter :: RM1=1.0d0/M1

236 integer, parameter :: M2=134456,IA2=8121,IC2=28411

237 real, parameter :: RM2=1.0d0/M2

238 integer, parameter :: M3=243000,IA3=4561,IC3=51349

239 integer :: IX1, IX2, IX3, jjj

240 integer :: iff=0

241 if (idum < 0 .or. iff == 0) then

242 iff = 1

243 IX1 = mod(IC1-idum,M1)

244 IX1 = mod(IA1*IX1+IC1,M1)

245 IX2 = mod(IX1,M2)

246 IX1 = mod(IA1*IX1+IC1,M1)

247 IX3 = mod(IX1,M3)

248 do jjj = 1,97

249 IX1 = mod(IA1*IX1+IC1,M1)

250 IX2 = mod(IA2*IX2+IC2,M2)

251 r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1

252 end do

253 end if

254 IX1 = mod(IA1*IX1+IC1,M1)

255 IX2 = mod(IA2*IX2+IC2,M2)

256 IX3 = mod(IA3*IX3+IC3,M3)

257 jjj = 1+(97*IX3)/M3

258 if (jjj > 97 .or. jjj < 1) PAUSE

259 ran1 = r(jjj)

260 r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1

261 end function ran1

262
263 end program ising

This is the required input file for the above program:

1 nrows - number of rows of spins (even number)

2 20

3 ncols - number of columns of spins (even number)

4 20

5 npass - number of passes for each temperature

6 200000

7 nequil - number of equilibration steps for each temperature

8 100000

9 high_temp - temperature to start scan at

10 2.92

11 low_temp - temperature to finish scan at

12 0.92

13 temp_interval - scanning interval

14 .1

15 ConfigType - 1: checkerboard, 2: interface, 3: unequal interface

16 1

17 MovieOn - set to .true. when running for 1 temp to make movie

18 .false.

19 End of file.

This is the IDL helper program for visualizing the final spin arrays at each temperature:

1 pro see_spins

2
3 inputfile = ’spin-array’

4 openr, inlun, inputfile, /get_lun

5 readf, inlun, nrows

6 readf, inlun, ncols

7 readf, inlun, nframes

8 readf, inlun, MovieOn

9 print, "MovieOn is", MovieOn

10 A = intarr(ncols,nrows)

11 window, 5, xsize=ncols*20, ysize=nrows*20, $

12 title=’2D Ising Model: light = +, dark = -’

13 for n = 0, nframes-1 do begin

14 for i = 0, nrows-1 do begin

15 for j = 0, ncols-1 do begin

16 readf, inlun, s

17 A(j,nrows-1-i) = s

18 endfor

19 endfor

20 if (MovieOn eq 2) then begin

21 if (total(A) < 0) then A = -A

22 for i = 0, nrows-1 do begin

23 for j = 0, ncols-1 do begin

24 if (A(j,nrows-1-i) eq -1) then A(j,nrows-1-i) = 1 $

25 else A(j,nrows-1-i) = -1

26 endfor

27 endfor

28 endif

29 A = A*1000

30 A = congrid(A, ncols*20, nrows*20)

31 tv, A

32 A = intarr(ncols, nrows)

33 print, "Frame", n

34 wait, 0.1

35 endfor

36 free_lun, inlun

37
38 end

Onsager’s Exact Solution

I happened to find this while I was looking for information for my presentation, and I thought it was
somewhat amusing.

In 1942, Onsager developed an exact solution to the problem of Ising spins in a plane, the
“two-dimensional Ising model.” This work stands, to this day, as a pinnacle of the achieve-
ments of theoretical physics of our time. Onsager’s solution yielded the thermodynamic
properties of the interacting system, and demonstrated the phase transition at Tc but in a
form quite unlike that of Curie-Weiss. In particular, the infinite specific-heat anomaly at
Tc is a challenge for approximate, simpler theories to reproduce. Onsager’s discovery was
not without an amusing sequel. The original solution was given by Onsager as a discussion
remark, following a paper presented to the New York Academy of Science in 1942 by Gre-
gory Wannier, but the paper, based on an application of Lie algebras, only appeared two
years later. However, his formula for the spontaneous magnetization below Tc which re-
quires substantial additional anaylsis, M = (1− x−2)1/8, x = sinh(2J1/kT) sinh(2J2/kT),
was never published by him, but merely “disclosed.” It required four years for its deci-
pherment. It was first exposed to the public on 23 August 1948 on a blackboard at Cornell
University on the occasion of a conference on phase transitions. Laslo Tisza had just pre-
sented a paper on The General Theory of Phase Transitions. Gregory Wannier opened the
discussion with a question concerning the compatibility of the theory with some properties
of the Ising moel. Onsager continued this discussion and then remarked that – inciden-
tally, the formula for the spontaneous magnetization of the two-dimensional model is just
that (given above.) To tease a wider audience, the formula was again exhibited during the
discussion which followed a paper by Rushbrooke at the first postwar IUPAP statistical
mechanics meeting in Florence in 1948; it finally appeared in print as a discussion remark.
However, Onsager never published his derivation. The puzzle was finally solved by C.N.
Yang and its solution published in 1952. Yang’s analysis is very complicated . . .

— D.C. Mattis, in The Theory of Magnetism I

