Monte Carlo Simulation of the 2D Ising Model

The Metropolis Algorithm

We know that the expectation value of an observable A can be written as

$$\langle A \rangle = \frac{\sum_{r} A_r e^{-\beta E_r}}{\sum_{r} e^{-\beta E_r}},\tag{1}$$

where A_r is the value of A for the state r. So given a system that has a discrete number of states, we could, using a computer, calculate A for each state and weight these values by their Boltzman factors to find the average A. This might be feasible for a system with a small number of states, but if we have a 20×20 spin lattice interacting via the Ising model, there are 2^{400} states, so we cannot possibly examine all of them.

What if we decide to just sample some of the states? How would we decide which ones? This is where the "Monte Carlo" part comes in. Named for the Mediterranean casino town, a Monte Carlo method is any algorithm that involves a pseudorandom number generator.

One (bad) way of using random numbers would be to randomly pick a lot of states, measure A for each of them, and weight these values of A by their Boltzman factors. We might get close to the right answer if we sampled a lot of states, but we would spend a lot of time calculating A for states that contribute very little to the final result (an Ising lattice at very high temperature is unlike to be in the state with all spins pointing in one direction).

Instead of sampling (measuring parameters like A for) a lot of states and then weighting them by their Boltzman factors, it makes more sense to choose states based on their Boltzman factors and to then weight them equally. This is known as the Metropolis algorithm, which is an importance sampling technique. One pass through the algorithm is described here:

- 1. A trial configuration is made by randomly choosing one spin.
- 2. The energy difference of the trial state relative to the present state, δE , is calculated.
- 3. If $\delta E \leq 0$, the trial state is energetically favorable and thus accepted. Otherwise, a random number $0 \leq \eta \leq 1$ is generated, and the new state is only accepted if $\exp(-\beta \delta E) > \eta$. This condition can be rewritten as $-\beta \delta E > \log \eta$, which is what I used in the code.

Calculating Observables

We can obtain some qualitative information about our simulation by watching the spin array during a simulation. I have written an IDL program, see_spins.pro, that allows us to do this. For high temperatures, the spins remain randomly aligned after long periods of equilibration, whereas for low temperatures, the spins end up pointing in mostly the same direction.

To get more quantitative results, we can measure the energy and the magnetization at each step of the routine. Before we start taking statistics, we should allow the system to equilibrate for a long time (my code equilibrates for nequil passes). We can then measure the magnetization by taking the sum of all the spins in the lattice, and we can calculate the energy by determining the energy for each spin and dividing by two for double counting.

What about the specific heat or susceptibility? There isn't a good way to claculate a derivative of the partition function in our code, but it turns out that the specific heat can also be written in terms of the variance of the energy:

$$C_{V} = \frac{\partial \langle E \rangle}{\partial T}$$

$$= -\frac{\beta}{T} \frac{\partial \langle E \rangle}{\partial \beta}$$

$$= \frac{\beta}{T} \frac{\partial^{2} \ln Z}{\partial \beta^{2}}$$

$$= \frac{\beta}{T} \frac{\partial}{\partial \beta} \left(\frac{1}{Z} \frac{\partial Z}{\partial \beta} \right)$$

$$= \frac{\beta}{T} \left[\frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta^{2}} - \frac{1}{Z^{2}} \left(\frac{\partial Z}{\partial \beta} \right)^{2} \right]$$

$$= \frac{\beta}{T} \left[\langle E^{2} \rangle - \langle E \rangle^{2} \right]. \tag{2}$$

Incidentally, this is known as the Fluctuation Dissipation Theorem.

Similarly, the magnetic susceptibility, χ , can be written in terms of the variance in the magnetization:

$$\chi = \frac{\partial \langle M \rangle}{\partial H}
= \beta \left[\langle M^2 \rangle - \langle M \rangle^2 \right].$$
(3)

So by keeping statistics on E, E^2 , M, and M^2 , we can plot the energy, the magnetization, the specific heat, and the magnetic susceptibility. On each of these graphs, each circle represents an independent run of 100,000 steps of equilibration and 100,000 more steps of data taking.

Figure 1: The energy is a continuous function of temperature, which, as we expect, increases as a function of T.

Figure 2: The magnetization drops off sharply near the critical temperature, which, in our units where k=J=1, is approximately 2.3.

Figure 3: The specific heat has a peak at the critical temperature.

 $\textbf{Figure 4:} \ \ \textbf{The magnetic susceptibility has a sharp jump at the critical temperature.}$

Codes

This FORTRAN 90 code generates statistics on energy, heat capacity, magnetization, and magnetic susceptibility for a range of temperatures:

```
program ising ! 2D Monte Carlo Simulation of Ising Model
 3
     ! Lisa Larrimore, lisal@sccs.swarthmore.edu
    ! 3 May 2002
 5
    ! Physics 114 Final Project
     ! This program is adapted from the Ising Model program written in
 8
     ! BASIC by Elaine Chandler that appears on p. 184 of David Chandler's
9
    ! Introduction to Modern Statistical Mechanics.
10
11
     ! The input parameters for this program are in "ising.in", and they
     ! allow the size, length, and initial configuration of the simulation
     ! to be changed. See comments in file.
15
    ! This program has three output files:
16
17
         "spin-array"
    !
                             Contains snapshots of the spin lattice at the end of
18
    !
                             each temperature run (or throughout the middle of the
19
                            run, if only looking at one temperature). Can be
    1
20
    !
                            visualized with the IDL program see_spins.pro
21
    1
22
    !
         "magnetization"
                            Contains four columns: each temperature, the
23
                            average magnetization at that temp, the ave magnetizaion
24
                            squared at that temp, and the susceptibility.
25
26
                            Contains four columns: each temperature, the
    1
         "energy"
27
                            average energy at that temp, the ave energy squared
28
                            at that temp, and the heat capacity.
29
30
    implicit none
31
32
    ! Variable declarations:
    integer :: i, j, m, n, m2, n2
                                   ! dummy integers
34
    integer, allocatable :: A(:,:) ! matrix containing spins
35
                                   ! number of rows and cols of A
    integer :: nrows, ncols
36
                                   ! temperature, inverse temperature
    real :: temp, beta
37
    integer :: ConfigType
                                   ! starting configuration type
    integer :: npass
                                   ! number of passes for MC algorithm
    integer :: ipass
                                   ! the current pass number
    integer :: nequil
                                   ! number of equilibration steps
41
                                   ! values of changed spin
    integer :: trial_spin
                                   ! starting temp for scan
42
    real :: high_temp
43
    real :: low_temp
                                    ! final temp for scan
    real :: temp_interval
                                    ! interval between scan points
45
                                    ! number of scans (each at diff T)
    integer :: nscans
46
    integer :: iscan
                                    ! current scan number
47
    logical :: MovieOn
                                    ! set to .true. to make movie of 1 temp
    real :: deltaU
                                    ! change in energy between 2 configs
```

```
49 real :: deltaU1, deltaU
                                   ! energy changes for lattice gas
    real :: log_eta
                                   ! log of random number to compare to
51 real :: magnetization
                                   ! magnetization of all spins in lattice
    52 real :: magnetization_ave
54
    real :: energy
                                  ! energy of all spins in lattice
55
    real :: energy_ave
                                  ! cumulative average of energy
     real :: energy2_ave
                                  ! cumulative average of energy squared
57
     integer :: output_count
                                 ! # times things have been added to averages
58
59
     print*, "_____MONTE CARLO 2D ISING MODEL_____"
     print*, "Monte Carlo Statistics for 2D Ising Model with"
60
     print*, " periodic boundary conditions."
61
62
     print*, "The critical temperature is approximately 2.3, as seen on"
63
     print*, " Chandler p. 123."
 64
65
     ! Read in input parameters from file "ising.in"
66
     open(unit=11,file='ising.in',status='old',action='read')
67
     read(11,*);read(11,*) nrows
68
    read(11,*);read(11,*) ncols
69
    read(11,*);read(11,*) npass
 70
    read(11,*); read(11,*) nequil
71
    read(11,*);read(11,*) high_temp
 72
    read(11,*); read(11,*) low_temp
 73
    read(11,*);read(11,*) temp_interval
 74
     read(11,*);read(11,*) ConfigType
 75
     read(11,*);read(11,*) MovieOn
 76
     close(11)
 77
 78
     ! Set the dimensions of the matrix of spin arrays. This program uses
 79
     ! periodic boundary conditions, so the first two rows and columns are
 80
     ! the same as the last two.
81
     allocate(A(nrows+2,ncols+2))
82
 83
     ! Open output files:
84
     open(unit=32,file='spin-array',status='replace',action='write')
85
     write(32,*) nrows
86
     write(32,*) ncols
87
     nscans = int((high_temp - low_temp)/temp_interval) + 1
88
     if (MovieOn) then
89
       write(32,*) 51
90
       write(32,*) 1
91
     else
92
     write(32,*) nscans
93
       write(32,*) 2
94
     endif
95
     open(unit=33,file='magnetization',status='replace',action='write')
97
     write(33,*) "temp ave_magnetization ave_magnetization^2 susceptibility"
98
     open(unit=34,file='energy',status='replace',action='write')
99
                       ave_energy ave_energy^2
     write(34,*) "temp
100
101
     scan_loop: do iscan = 1, nscans
```

```
102
        temp = high_temp - temp_interval*(iscan-1)
103
        print*, "Running program for T =", temp
104
105
        ! Initialize variables
106
       beta = 1.0/temp
107
        output_count = 0
108
        energy_ave = 0.0
109
        energy2_ave = 0.0
110
        magnetization_ave = 0.0
111
       magnetization2\_ave = 0.0
112
113
        ! Set up the initial spin configuration.
114
        select case(ConfigType)
115
          case(1) ! checkerboard setup
116
            A(1,1) = 1
117
            do i = 1, nrows+1
118
              A(i+1,1) = -A(i,1)
119
            enddo
120
            do j = 1, ncols+1
121
              A(:,j+1) = -A(:,j)
122
123
            ! (note: the requirement that nrows and ncols are even is to
124
            ! ensure that the first two rows/cols start out the same as the
125
            ! last two)
126
          case(2) ! interface
127
            do i = 1, nrows+2
128
              do j = 1, (ncols+2)/2
                A(i,j) = 1
129
130
              enddo
131
              do j = (ncols+2)/2 + 1, ncols+2
132
                A(i,j) = -1
133
              enddo
134
            enddo
135
          case(3) ! unequal interface
136
            do i = 1, nrows+2
137
              do j = 1, (ncols+2)/4
138
                A(i,j) = 1
139
              enddo
140
              do j = (ncols+2)/4 + 1, ncols+2
141
                A(i,j) = -1
142
              enddo
143
            enddo
144
          case default
145
            print*, "Error! Check ConfigType parameter in ising.in"
146
            stop
147
        end select
148
149
        ! Main loop containing Monte Carlo algorithm:
150
        MC_passes: do ipass = 0, npass
151
152
          ! If MovieOn is .true., write the spin array to an output every
153
          ! npass/50 steps.
154
          if ((MovieOn) .and. (mod(ipass,npass/50) == 0)) then
```

```
155
            do i = 2, nrows+1
156
              do j = 2, ncols+1
157
                write(32,*) A(i,j)
158
              enddo
159
            enddo
160
          endif
161
162
          ! If ipass is greater than nequil (the number of equilibration steps),
163
          ! calculate the magnetization and energy:
164
          if (ipass > nequil) then
165
            output_count = output_count + 1
166
            magnetization = sum(A(2:nrows+1,2:nrows+1))/(ncols*nrows*1.0)
167
            magnetization_ave = magnetization_ave + magnetization
168
            magnetization2_ave = magnetization2_ave + magnetization**2
169
            energy = 0.0
170
            do i = 2, nrows + 1
171
              do j = 2, ncols + 1
172
                energy = energy - A(m,n)*(A(m-1,n)+A(m+1,n)+A(m,n-1)+A(m,n+1))
173
              enddo
174
            enddo
175
            ! Divide the energy by the total number of spins to get the ave
176
            ! energy per spin, and divide by 2 to account for double counting.
177
            energy = energy/(ncols*nrows*2.0)
178
            energy_ave = energy_ave + energy
179
            energy2_ave = energy2_ave + energy**2
180
181
182
          ! Randomly choose a spin to change:
183
          m = nint((nrows-1)*ran1(5) + 2)! choose a random row
184
          n = nint((ncols-1)*ran1(5) + 2)! choose a random column
185
          trial\_spin = -A(m,n)
                                                    ! trial spin value
186
187
          ! Find change in energy (deltaU) due to trial move.
188
          ! If exp(-beta*deltaU) > eta, where eta is random, accept move:
          deltaU = -trial\_spin*(A(m-1,n)+A(m+1,n)+A(m,n-1)+A(m,n+1))*2
189
190
          log_eta = dlog(ran1(5) + 1.0d-10) ! random number 0-1 (+ tiny offset)
191
          if (-beta*deltaU > log_eta) then
192
            A(m,n) = trial_spin
193
            if (m == 2) A(nrows+2,n) = trial_spin
194
            if (m == nrows+1) A(1,n) = trial_spin
195
            if (n == 2) A(m,ncols+2) = trial_spin
196
            if (n == ncols+1) A(m,1) = trial_spin
197
          endif
198
199
        enddo MC_passes
200
201
        ! Write final spin array to output file
202
        if (.not. MovieOn) then
203
          do i = 2, nrows + 1
204
            do j = 2, ncols + 1
205
              write(32,*) A(i,j)
206
            enddo
207
          enddo
```

```
208
       endif
209
       write(33,*) temp, abs(magnetization_ave/output_count), &
210
         magnetization2_ave/output_count, &
211
         beta*(magnetization2_ave/output_count - (magnetization_ave/output_count)**2)
212
       write(34,*) temp, energy_ave/output_count, energy2_ave/output_count, &
213
          (beta**2)*(energy2_ave/output_count - (energy_ave/output_count)**2)
214
215
      enddo scan_loop
216
217
      close(32)
218
     close(33)
219
     close(34)
220
221
      print*, "Program ising.f90 complete!"
222
     print*, "Look at 'spin-array' with IDL program see_spins.pro"
223
224
      contains
225
226
227
      !_____RANDOM NUMBER GENERATING FUNCTION____!
228
229
     double precision function ran1(idum)
230
     implicit none
231
     double precision :: r(97)
232
     integer, intent(IN) :: idum
233
234
     integer, parameter :: M1=259200, IA1=7141, IC1=54773
235
     real, parameter :: RM1=1.0d0/M1
236
     integer, parameter :: M2=134456,IA2=8121,IC2=28411
237
     real, parameter :: RM2=1.0d0/M2
238
     integer, parameter :: M3=243000, IA3=4561, IC3=51349
239
     integer :: IX1, IX2, IX3, jjj
240
     integer :: iff=0
241
     if (idum < 0 .or. iff == 0) then
242
       iff = 1
243
      IX1 = mod(IC1-idum,M1)
       IX1 = mod(IA1*IX1+IC1,M1)
244
245
       IX2 = mod(IX1,M2)
246
       IX1 = mod(IA1*IX1+IC1,M1)
247
       IX3 = mod(IX1,M3)
248
       do jjj = 1,97
249
         IX1 = mod(IA1*IX1+IC1,M1)
250
         IX2 = mod(IA2*IX2+IC2,M2)
251
         r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1
252
       end do
253
     end if
254
     IX1 = mod(IA1*IX1+IC1,M1)
255
     IX2 = mod(IA2*IX2+IC2,M2)
256
     IX3 = mod(IA3*IX3+IC3,M3)
257
     jjj = 1+(97*IX3)/M3
258
     if (jjj > 97 .or. jjj < 1) PAUSE
259
     ran1 = r(jjj)
260
     r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1
```

```
261
      end function ran1
262
263
      end program ising
      This is the required input file for the above program:
  1
      nrows - number of rows of spins (even number)
  2
  3
      ncols - number of columns of spins (even number)
  4
  5
      npass - number of passes for each temperature
  6
      nequil - number of equilibration steps for each temperature
      100000
 9
      high_temp - temperature to start scan at
 10
 11
      low_temp - temperature to finish scan at
 12
      0.92
 13
      temp_interval - scanning interval
 14
      . 1
 15
      ConfigType - 1: checkerboard, 2: interface, 3: unequal interface
 16
 17
      MovieOn - set to .true. when running for 1 temp to make movie
 18
      .false.
 19
      End of file.
      This is the IDL helper program for visualizing the final spin arrays at each temperature:
  1
      pro see_spins
  2
  3
      inputfile = 'spin-array'
      openr, inlun, inputfile, /get_lun
      readf, inlun, nrows
  6
     readf, inlun, ncols
     readf, inlun, nframes
  8
     readf, inlun, MovieOn
     print, "MovieOn is", MovieOn
 10
     A = intarr(ncols,nrows)
      window, 5, xsize=ncols*20, ysize=nrows*20, $
       title='2D Ising Model: light = +, dark = -'
 13
     for n = 0, nframes-1 do begin
 14
       for i = 0, nrows-1 do begin
 15
          for j = 0, ncols-1 do begin
            readf, inlun, s
 16
 17
            A(j,nrows-1-i) = s
 18
          endfor
 19
        endfor
 20
       if (MovieOn eq 2) then begin
21
          if (total(A) < 0) then A = -A
22
         for i = 0, nrows-1 do begin
 23
            for j = 0, ncols-1 do begin
 24
              if (A(j,nrows-1-i) eq -1) then A(j,nrows-1-i) = 1$
                else A(j,nrows-1-i) = -1
```

```
26
           endfor
27
         endfor
28
       endif
29
       A = A*1000
30
       A = congrid(A, ncols*20, nrows*20)
31
32
       A = intarr(ncols, nrows)
33
       print, "Frame", n
34
       wait, 0.1
35
     endfor
36
     free_lun, inlun
37
38
```

Onsager's Exact Solution

I happened to find this while I was looking for information for my presentation, and I thought it was somewhat amusing.

In 1942, Onsager developed an exact solution to the problem of Ising spins in a plane, the "two-dimensional Ising model." This work stands, to this day, as a pinnacle of the achievements of theoretical physics of our time. Onsager's solution yielded the thermodynamic properties of the interacting system, and demonstrated the phase transition at T_c but in a form quite unlike that of Curie-Weiss. In particular, the infinite specific-heat anomaly at T_c is a challenge for approximate, simpler theories to reproduce. Onsager's discovery was not without an amusing sequel. The original solution was given by Onsager as a discussion remark, following a paper presented to the New York Academy of Science in 1942 by Gregory Wannier, but the paper, based on an application of Lie algebras, only appeared two years later. However, his formula for the spontaneous magnetization below T_c which requires substantial additional analysis, $M = (1 - x^{-2})^{1/8}$, $x = \sinh(2J_1/kT) \sinh(2J_2/kT)$, was never published by him, but merely "disclosed." It required four years for its decipherment. It was first exposed to the public on 23 August 1948 on a blackboard at Cornell University on the occasion of a conference on phase transitions. Laslo Tisza had just presented a paper on The General Theory of Phase Transitions. Gregory Wannier opened the discussion with a question concerning the compatibility of the theory with some properties of the Ising moel. Onsager continued this discussion and then remarked that - incidentally, the formula for the spontaneous magnetization of the two-dimensional model is just that (given above.) To tease a wider audience, the formula was again exhibited during the discussion which followed a paper by Rushbrooke at the first postwar IUPAP statistical mechanics meeting in Florence in 1948; it finally appeared in print as a discussion remark. However, Onsager never published his derivation. The puzzle was finally solved by C.N. Yang and its solution published in 1952. Yang's analysis is very complicated ...

— D.C. Mattis, in The Theory of Magnetism I