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Relativistic Electromagnetic Field Transformations

Derivation of Transformation Equations
Since the general transformation rules for electromagnetic fields should be the same no matter how the fields

were produced, both Griffiths and Purcell derive these rules based on the simple case of two parallel uniformly
charged sheets. Using our text’s notation, let S0 be the system in which a capacitor with plates parallel to the
x0-z0 plane is at rest. S is the system moving with velocity v0x̂ relative to S0, and S̄ is the system moving with
velocity v̄x̂ relative to S0 and with vx̂ relative to S. To write v̄ in terms of v and v0, you must remember Einstein’s
velocity addition rule (see Example 12.6):

v̄ =
v + v0

1 + vv0/c2
. (1)

Also remember the definition of γ,

γ =
1

(1− v2/c2)1/2
, (2)

and the Lorentz contraction rule, which tells us that the length in the x-direction of the moving sheets is contracted

l0 = γ0l = γ̄l̄.

Thus, since charge is invarient, and since the width in the z-direction is not changed by motion in the x-direction,

σ0

l0w0
=

σ

lw0
=

σ̄

l̄w0
⇒ σ0 =

σ

γ0
=
σ̄

γ̄
. (3)

We have two sheets with surface charge ±σ and surface current K± = ∓σvrelx̂. The fields should be familiar -
we derived the E-field in Example 2.4 (using Gauss’s Law) and the B-field in Example 5.8 (using Ampère’s Law):

Ey =
σ

ε0
, Bz = −µ0σv0,

Ēy =
σ̄

ε0
, B̄z = −µ0σ̄v̄. (4)

Using our charge density transformations from Eq. (3), we can write Eq. (4) as

Ēy =
(
γ̄

γ0

)
σ

ε0
, B̄z = −

(
γ̄

γ0

)
µ0σv̄. (5)

From the definition of γ in Eq. (2), the velocity addition rule in Eq. (1), and some algebra, we have

γ̄

γ0
=
(

1− v2
0/c

2

1− v̄2/c2

)1/2

=

 c2 − v2
0

c2 −
(

v+v0
1+vv0/c2

)2


1/2

=
1 + vv0/c

2

(1− v2/c2)1/2
= γ

(
1 +

vv0

c2

)
.

Substituting into Eq. (5), this gives us

Ēy = γ
(

1 +
vv0

c2

) σ
ε0

= γ

(
Ey −

v

c2ε0µ0
Bz

)
= γ (Ey − vBz)

and

B̄z = −γ
(

1 +
vv0

c2

)
µ0σ

(
v + v0

1 + vv0/c2

)
= γ (Bz − µ0ε0vEy) = γ

(
Bz −

v

c2
Ey

)
.

We can similarly see how Ez and By transform by aligning the plates parellel to the x-y plane, in which case
the charge densities are increased in the same way and the fields in S become

Ez =
σ

ε0
, By = µ0σv0.



Since Ez equals our old Ey and By equals minus our old Bz, we can write down the transformation rules with these
substitutions.

If the capacitor is oriented parallel to the y-z plane, then the contracted dimension is the distance between
the capacitors, so the charge density remains the same in all reference frames. The electric field is the same in all
frames, so Ēx = Ex. This situation, however, does not tell us the transformation rule for Bx, since there is no
magnetic field in any frame. For this, we must construct an entirely different configuration: a solenoid with its
center along the x-axis at rest in S. The magnetic field in S is

Bx = µ0nI.

In S̄, both n and I change because length contracts, increasing the number of turns per length by a factor of γ,
and time dilates, decreasing the charge per unit time by a factor of 1/γ. Thus,

B̄x = µ0n̄Ī = µ0(γn)
(
I

γ

)
= µ0nI = Bx.

Our complete transformation rules are now

Ēx = Ex, Ēy = γ(Ey − vBz), Ēz = γ(Ez + vBy), (6)

B̄x = Bx, B̄y = γ
(
By + v

c2Ez
)
, B̄z = γ

(
Bz −

v

c2
Ey

)
.

Note that the components of both E and B parallel to the motion remain unchanged. Also note that if there
is any frame in which either E or B is zero, we have simple relations for the fields in any other system: B = 0 in
S implies that

B̄ = γ
v

c2
(Exŷ − Eyẑ) =

v

c2
(Ēzŷ − Ēz ẑ) = − 1

c2
(v × Ē), (7)

and E = 0 in S implies that

Ē = −γv(Bzŷ −Byẑ) = −v(B̄zŷ − B̄yẑ) = v × B̄. (8)

Fields of a Point Charge in Uniform Motion (Revisited)
In Example 10.4 Griffiths calculated the electric and magnetic fields of a point charge moving with constant

velocity by using the retarded potentials. This problem becomes much easier with our new tools for describing field
transformations, as seen in Examples 12.13 and 12.14.

We can write the electric field of a point charge q at rest as

E0 =
q

4πε0
x0x̂ + y0ŷ + z0ẑ
(x2

0 + y2
0 + z2

0)3/2
.

Since the magnetic field in this frame is zero, we can use the transformaion rules to write E in a frame moving to
the right at speed v0 relative to the rest frame:

E0 =
q

4πε0
x0x̂ + γ0y0ŷ + γ0z0ẑ

(x2
0 + y2

0 + z2
0)3/2

.

To find the field at a point P in terms of the coordinates of the moving frame, let R be the vector from q to P , so
that y0 = y = Ry and z0 = z = Rz (since there is no motion in the y or z directions), and x0 = γ0(x+ v0t) = γ0Rx
by the Lorentz transformation. Converting to cylindrical coordinates,

E =
q

4πε0
γ0R

(γ2
0R

2 cos2 θ +R2 sin2 θ)3/2

=
q

4πε0
1− v2

0/c
2

[1− (v2
0/c

2) sin2 θ]3/2
R̂
R2

. (9)



Using Eq. (9) we can check that Gauss’s Law,
∫

E · da = (1/ε0)Qenc, is obeyed by the field of a point charge
in uniform motion, by integrating over a sphere of radius R centered on the charge (Problem 12.43a):∫

E · da =
∫ (

1
4πε0

q(1− v2
0/c

2)
[1− (v2

0/c
2) sin2 θ]3/2

r̂
R2

)
·
(
R2 sin θdθdφr̂

)
=

q

2ε0

(
1− v2

0

c2

)∫ π

0

sin θ
[1− (v2

0/c
2) sin2 θ]3/2

dθ =
q

2ε0

(
1− v2

0

c2

)(
2

1− v2
0/c

2

)
=

q

ε0
.

Once we have the electric field of a point charge in uniform motion, calculating the magnetic field is not too
difficult. Since there exists a frame (the particle’s rest frame) in which the magnetic field is zero, we can use Eq.
(7) to write

B = − 1
c2

(v ×E) = − qγ0

c24πε0
x̂× (Rxx̂ +Ryŷ +Rxẑ)

(γ2
0R

2
x +R2

y +R2
z)3/2

=
qµ0

4π
v(1− v2/c2) sin θ

[1− (v2/c2) sin2 θ]3/2
φ̂

R2
.


