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Physics 115 - Seminar 1

Shankar 17.2.2 Consider a spin-1/2 particle with gyromagnetic ratio v in a magnetic field B = Bi + B,k.
Treating B as a perturbation, calculate the first- and second-order shifts in energy and first-order shift in wave
function for the ground state. Then compare the exact answers expanded to the corresponding orders.

The Hamiltonian for a particle in a magnetic field B is
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So in this case,
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We must first calculate the unperturbed energies and eigenstates. To solve the Schréodinger equation,
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we must find the eigenvalues of
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so A = £1. This gives eigenvalues E® = —%hBO and EY = 'YTEBO. To find the wave functions for the unperturbed
state, we insert these eigenvalues into Eq. (3) to find
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Now we find the change in energy and wave function for the ground state (n = —) due to the perturbing
Hamiltonian,
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We first calculate the first-order shift in the ground state energy from Shankar Eq. (17.1.7):
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There is thus no first-order shift in the ground state energy. Shankar Eq. (17.1.14) gives the perturbed wave

function with the first-order correction,
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To properly normalize this state vector, we would divide it by [1 + B2/(2B2)]'/2, but this equals 1 to first order.
Using this perturbed wave function, the second-order energy shift can be found by using Shankar Eq. (17.1.16):
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The perturbed energy, to second order, is thus
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To compare these results to the exact answers, we solve Eq. (3) for
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Again letting EQ = AyhBy/2, we find our eigenvalues from
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where we can expand the radical in a Taylor series to second order since B < By. Note that this is idential to the
perturbed energy to second order shown in Eq. (11). Now, to find the wave function for the ground state, we solve
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to find the ratio y/z = B/(2By). This gives an eigenvector of
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which is equivalent to the result obtained with perturbation theory, Eq. (9).



