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The Tippy-Top

General Description
As seen in Figure (1), when a tippy-top is spun on a smooth surface, it turns itself upside-down

to rotate on its stem. In the process, it raises its center of mass and reverses its direction of rotation.
Similarly, when a class ring is spun with the stone down, it lofts the stone in the air, and when a
hard-boiled egg is spun flat, it rises to spin on one end.

This peculiar behavior has intrigued physicists since at least the 19th century, but it was not accurately
described until the 1950’s, and even then the description was limited by large approximations.

Friction is the key to understanding the behavior of the tippy-top. Since the CM is elevated during
inversion (increasing the potential energy), the rotational kinetic energy must decrease. Thus, the total
angular momentum L must decrease, which requires an external torque. L is almost entirely in the
vertical ẑ direction, so it cannot be changed by the normal or gravitational forces, since both point along
the z axis. Friction is therefore necessary to explain the top’s peculiar behavior.

A Simple Model1

Because the CM of a tippy-top is near the center of curvature (above which the top spins), as seen in
Figure (2), the gravitational torque can be neglected. Note that the frictional force is coming out of the
page, opposing the direction of slipping. The frictional torque is nearly horizontal and time averages to
zero, so by neglecting it as well, we have no external torques on the top. Assuming that the tippy-top is
initially spun vertically, this means that the angular momentum remains a constant along the z-axis.

Now let L be the angular momentum described in the body frame. Using the definition of torque and
the general relation between the time derivative of a vector in the fixed and rotating frames, we have

N =
dLfixed

dt
=
dL
dt

+ ω × L (1)

Since the tippy-top is approximately spherical, we let I1
∼= I2

∼= I3, so that L ∼= Iω and ω × L ∼= 0. L
remains vertical and N remains horizontal. Thus, by Eq. (1), dL

dt is always perpendicular to L, causing
L to precess uniformly in the body frame.

Taking the component of Eq. (1) along the symmetry axis of the top, ê3, we have

ê3 ·N =
d(ê3 · L)

dt
(2)

Since ê3 ·N = N cos(θ + π
2 ) = −N sin θ and ê3 · L = L cos θ, Eq. (2) becomes

−N sin θ =
d

dt
L cos θ = −Lθ̇ sin θ + L̇ cos θ (3)

We have assumed that L̇ = 0, and so we have

θ̇ =
N

L
∼=
µMgR

Iω
(4)

We see that θ increases, causing the top to begin to flip.
1Barger and Olsson, Classical Mechanics: A Modern Perspective, 1973.



Once the stem of the top touches the table, we have an ordinary rising top. N will still be perpendicular
to L, and L will still change in the direction of N. However, since we now assume that L lies along the
symmetry axis ê3, θ̇ is negative, and the tippy-top rights itself to the stable verticle position, where it
will remain as long as

ω3 ≥
(4MgRI)

1
2

I3
(5)

as we saw in problem A1.

Other Considerations
While this analysis has given us a basic understanding of how the tippy-top works, we have made

some large approximations. L is not really a constant during the first part of inversion, then suddenly
switching from being along the fixed vertical axis to the body axis when the stem touches the table. Also,
we assumed that the center of mass was on the axis of rotation, which allowed us to ignore the normal
and gravitational forces.

A more rigorous analysis leads to six nonlinear differential equations (three translational and three
angular), and a numerical solution allows you to solve for the motion of the top. The θ for a small
coefficient of friction is seen in Figure (3).2 Note that it is not monotonically increasing, but is nutating
as the top flips.

2R.J. Cohen, Am. J. Phys. 45, 12 (1977).


