
Path Integral Monte Carlo Simulations

of Positronium in Argon

Lisa M. Larrimore

June 7, 2002

Abstract

Positronium (Ps) is modeled inside a solid Argon lattice using the path integral Monte

Carlo (PIMC) technique. Statistics on site occupancy, Ps structure, and energies are

collected for argon both with and without a monovacancy. The Ps atom is found

to avoid the monovacancy and to have only modest increases in lifetime when the

vacancy is available. Although the calculated lifetimes are somewhat different from

experimental measurements, this model correctly predicts a longer lifetime for triplet

state o-Ps (700 ± 15 ps) than for a bare positron (510 ± 5 ps) inside a defect-free Ar

lattice. The p-Ps lifetime in Ar is predicted to be under 90 ps. The calculated wave

function for isolated Ps is exactly fit to theory. The internal contact density of Ps

in Ar, which describes the ratio of electron-positron overlap at the origin compared

to that of free Ps, is determined from the modified Ps wave functions. The internal

contact density is κ = 1.25 ± 0.02 in Ar with or without a monovacancy. This result

contrasts with the measurements of κ ≤ 1 in many solids. Instead of being polarized

by the surrounding atoms, Ps is slightly compressed by the potential model used.

Contents

1 Introduction 3

1.1 Positrons and Positronium . 3

1.2 Positronium Experiments . 4

1.3 Computational Methods . 7

2 Theory 9

2.1 Quantum Mechanical Description of Ps 9

2.1.1 Wavefunctions and Energies from Schrödinger Equation 9

2.1.2 Ps Fine Structure Energy Corrections 11

2.2 Ps in Solids . 14

2.2.1 Internal Contact Density κ . 14

2.2.2 Solid Argon . 15

3 Computational Methods 20

3.1 Path Integral Monte Carlo (PIMC) . 20

3.2 Ps Energy . 25

3.2.1 Electron-Positron Interaction: The Exact Coulombic Propagator 25

3.2.2 Electron External Potential: Phenomenological Model 27

3.2.3 Positron External Potential: Density Functional Theory (DFT) . 28

3.2.4 Kinetic Energy Estimators . 30

3.3 Ps Lifetime: Enhancement Factor γ . 32

3.4 Pair Correlation Function g(r) . 33

3.5 Practical Details: Hardware and Software 34

4 Results 35

4.1 A Single Positron in Ar . 35

4.2 Ps in Ar with and without a Monovacancy 38

4.2.1 Radial Distribution and κ . 38

4.2.2 Pair Correlation Function . 40

4.2.3 Energy and Lifetimes . 43

5 Conclusions and Future Directions 47

A Radial Schrödinger Equation for Coulombic Potential 48

B Partition Function for Classical Ring Polymer 51

C The Basics of Density Functional Theory (DFT) 53

D Measuring κ with Magnetic Quenching 56

E PIMC Program Code 59

Acknowledgements 87

References 88

2

1 Introduction

1 Introduction

1.1 Positrons and Positronium

The Dirac equation, published in 1928, can accurately describe the relativistic behavior

of particles such as the electron. It also produces negative energy solutions, which were

initially considered an unphysical annoyance. After publishing his equation, Dirac

realized that the negative energy solutions for electrons were not unphysical, but instead

represented particles of positive charge. In 1930, Oppenheimer showed that these

particles must have the mass of the electron. This predicted particle, a positively

charged electron, is exactly what Carl Anderson observed when he applied a magnetic

field in his cloud chamber at Caltech in 1932, and this new particle was named the

positron [1].

Like electrons, positrons are leptons with mass 511 keV and spin 1/2. The difference

is that their charges and magnetic moments, while equal in magnitude, are opposite in

sign. When the wave functions of an electron and positron overlap, the two particles

annihilate; due to conservation laws, they must release at least two photons with a

total energy of 1022 keV.

In 1943, Mohorovicic postulated the existence of positronium (Ps), a bound state

of an electron and a positron, which was first experimentally observed by Deutsch in

1951 [2]. Since the electron and positron interact via the Coulomb potential, Ps can

be solved in the nonrelativistic limit much like hydrogen. Where the reduced mass of

hydrogen is approximately equal to the mass of the electron, me, the reduced mass

of Ps is me/2. This doubles the Bohr radius and halves the energy levels of Ps in

comparison with hydrogen, as will be demonstrated in Section 2.1.

There are several important differences, however, between Ps and hydrogen. One

is that Ps, unlike hydrogen, has a finite lifetime. Another is that there are different

higher-order corrections to the energies of both Ps and hydrogen due to effects such

as relativity and spin-orbit coupling; the corrected energy levels are known as fine and

hyperfine structure. These differences will be discussed further in Section 2.1. The

important implications of these results on this research will be seen in Section 2.2.

When the spins of the electron and positron forming Ps are antiparallel, the total

3

1.2 Positronium Experiments

spin is zero, and the state is known as singlet or para-positronium (p-Ps). When the

spins are parallel, they sum to one, and the state is triplet or ortho-positronium (o-

Ps). In Dirac’s braket notation, each of these states can be represented by a ket of the

form |ms, s〉 , where ms and s are the spin quantum numbers: p-Ps is represented as

|0, 0〉 , and o-Ps is represented as |0, 1〉 or |±1, 1〉 . In vacuum, the singlet state generally

annihilates in 0.125 ns to form two 511 keV photons traveling in approximately opposite

directions [3]. Due to conservation of angular momentum, the triplet state cannot decay

to two photons; at least three are needed [4]. Because three-photon annihilation is less

likely than two-photon annihilation, the mean lifetime of isolated o-Ps is 140 ns. In

most solids, this is reduced to a few nanoseconds due to pick-off annihilation from other

electrons [3], as will be described in Section 2.2.

1.2 Positronium Experiments

Positrons can serve as a useful and non-destructive tool for probing materials because

the electrons with which they annihilate are quickly replaced by others. Because there

are no positrons already present in a material being probed, it is fairly easy to deter-

mine the history of the probe positrons. For this reason, positron probes can resolve

small defects that other probes, such as electrons, cannot distinguish. Positron exper-

iments have a wide variety of uses, from detecting changes in weapons materials [5] to

determining whether a diamond is natural or synthetic [6].

In some experiments, positrons are created from the beta decay of sources such as
22Na. Because the radioisotopes used have a high proton/neutron ratio, protons in their

nuclei will spontaneously become neutrons, in which case conservation laws require the

release of a positron and a neutrino. This reaction is described by the equation

Na22 → Ne22 + e+ + ν− + γ(1.27MeV). (1.1)

Beta decay can be used to produce low-intensity positron beams for small experiments.

It can also be used by larger facilities to create very high energy positrons; for example,

the Pelletron Accelerator at Lawrence Livermore National Laboratory (LLNL) uses

beta decay to create a MeV positron beam [5].

4

1.2 Positronium Experiments

Positrons can also be created through pair production, in which a photon turns

into an electron-positron pair. Any photon with sufficient energy can do this, though

the rate at which positrons are produced in atmospheric background radiation is not

very useful for experiments. To increase the rate of pair production, it is necessary

to have a large amount of radiation and many nuclei with which to interact. At large

experimental facilities, such as LLNL, this can be done with particle accelerators, as

seen in Figure 1. When a fast-moving electron hits a metal target, it quickly slows down,

Figure 1: Positron production at LLNL. The intense bremsstrahlung radi-
ation produced from decelerating electrons interacts with the nuclei in the
metal, resulting in pair production of positrons. [8]

giving off bremsstrahlung, or “braking radiation.” The power radiated by a point charge

is in the forward direction and is proportional to the square of its acceleration [7]. This

radiation then interacts with the nuclei in the metal, resulting in pair production of

positrons. The Electron-Positron Beam Facility at LLNL produces the most intense

beam of positrons in the world, at about 1010 positrons per second [8].

Inside an insulating solid, it is generally assumed that the positron can form a bound

state with an electron and reach thermal equilibrium inside its host within about 10 ps

after entering the material [9]; we can therefore model Ps in the equilibrium state to

5

1.2 Positronium Experiments

study its behavior inside a solid. As you will see in Section 4, the wavefunction of this

state is very similar to the ground state. We must also consider the perturbing effects

of other electrons in the solid, since unperturbed Ps only exists in large cavities in any

condensed medium [10]. The annihilation rate of a state of Ps in a solid is given by

Γ = κΓ0 + Γp.o., (1.2)

where Γ0 is the annihilation rate for unperturbed Ps and Γp.o. is the pick-off annihilation

rate due to other electrons in the solid. κ is known as the “internal contact density”

and describes the spatial extent of the Ps atom [10]. For isolated Ps, κ = 1, but due to

the potentials inside solids, κ can decrease or increase as Ps is polarized or compressed.

The behavior of Ps inside solids will be described further in Section 2.2.

Because the photons emitted when a positron and electron annihilate have a distinct

energy, they can be easily detected by only looking for photons with an energy around

511 keV, which signals p-Ps decay. Information about these photons reveals information

about the annihilation event. That is, the time between when a positron is born and

sent inside a material and when the 511 keV photons are detected gives the lifetime

of the positron, which helps in determining the electron charge density around the

positron. This is discussed more formally in Section 2.2.1. As seen in Figure 2, the

experimental lifetime is much longer if the positron is in a region of low electronic

density. This correlation can result in valuable information about the material being

probed. For example, if stainless steel is strained less than 10% of the way to failure,

this early fatigue damage cannot be detected by standard nondestructive evaluation

techniques, but a 210 ps positron lifetime increases in intensity from 15% to over 70%

due to the increased number of defects [12]. Other measurement techniques, angular

correlation of annihilation radiation (ACAR) and Doppler-broadening spectroscopy,

give information about the momentum and energy distribution of the positron and

annihilating electron. These two phenomena were not directly simulated for this thesis

work, but would be interesting grounds for a future study.

There are many unanswered questions about the behavior of positrons in solids,

and, correspondingly, experimentalists sometimes use inaccurate models to interpret

6

1.3 Computational Methods

Figure 2: Positron lifetime in semiconductor lattices. Open circles are
experimental values, closed circles are theoretical values based on the semi-
conductor model of Puska et al. [11]. Note that the positron lifetime
increases when it is inside a material with larger cavities, and thus lower
electronic density.

their data. Nakanishi et al. have parameterized a correlation curve relating positron

lifetime to the size of open volumes in systems with well-defined open regions [13], and

this method is now extensively used to measure the free volumes in other insulating

systems [14]. The free-volume models underlying this approach, however, are based on

simplistic assumptions, such as assuming simple geometric shapes for the free volume

regions. Although the free-volume approach has produced correct results in many

systems, it may be obscuring our physical understanding of Ps in solids. The problem

of a positron in a crystal is too complex for an analytic solution, but it may be treated

using computational methods.

1.3 Computational Methods

The increasing processing power of computers has led many physicists to examine ways

to turn problems that cannot be solved analytically into ones that may be easily solved

computationally. Since the 1970s, physicists have employed so-called Monte Carlo algo-

rithms to study quantum many-particle systems. Named for the Mediterranean casino

town, a “Monte Carlo” method is any algorithm that involves a pseudorandom number

generator. Monte Carlo techniques can be used for everything from calculating inte-

7

1.3 Computational Methods

grals over high-dimensional volumes to modeling traffic (treating the behavior of cars

with random numbers) [15]. Quantum Monte Carlo methods include variational Monte

Carlo (VMC), in which a trial wave function is adjusted using variational methods, and

diffusion Monte Carlo (DMC), in which the similarity between the Schrödinger equation

and the diffusion equation is exploited [15]. The technique used in the work discussed

here, path-integral Monte Carlo (PIMC), is one of many variants on the Monte Carlo

technique; it is designed for systems at finite temperatures [16].

PIMC relies on a useful isomorphism between a quantum system and a classical

system. The partition function for a quantum system can be expressed as a Feynman

path integral, save that the real time t is replaced by an imaginary time τ = it; this

form will be discussed in Section 3.1. When the potential does not vary over a distance

greater than the thermal wavelength, this path integral becomes classical [17]. The

partition function needed to calculate thermal averages for a quantum system of N

particles is shown to be mathematically equivalent to the partition function for N

classical ring polymers [16].

Using this result, we can represent our two-particle Ps quantum system as N = 2

classical ring polymers; in other words, two closed chains of several hundred to several

thousand “beads.” PIMC has been used by others to model the entire Ps atom as a

single chain [18, 19], but we can obtain more information (such as κ or the binding

energy) by treating each particle separately. The interaction between the two chains

was guided by the “Pollock” propagator, which will be discussed in Section 3.2.1. The

potential felt by the chains of beads due to the surrounding solid was determined using

both phenomenological potential models and density functional theory (DFT), which

will be discussed in Sections 3.2.2 and 3.2.3.

In earlier work, we have used this method to illustrate systematic differences be-

tween the positron distribution in a hard cavity and the corresponding free-volume

model [20]. Proceeding to the task of modeling a more realistic solid, we chose to sim-

ulate solid argon (Ar) in this work, both because it is a relatively simple system and

because there are a number of disputed facts about Ar in the literature that we hoped

to address. The results from this research are presented in Section 4.

8

2 Theory

2 Theory

2.1 Quantum Mechanical Description of Ps

2.1.1 Wavefunctions and Energies from Schrödinger Equation

Free Ps, like free hydrogen, is a two-body system with Hamiltonian

Ĥ =
p̂2

+

2m+
+
p̂2
−

2m−
− e2

r
, (2.1)

where r = r+ − r−. For Ps, m− = m+ = me, which means that the reduced mass

is me
2 , not me as in the case of hydrogen. We will briefly review the solution to this

system, for it serves as a check for our numerical simulation.

We are interested in solving the time-independent Schrödinger equation,

Ĥφ(r+, r−) = Eφ(r+, r−), (2.2)

where φ(r+, r−) is the two-particle wavefunction. Since we are considering free Ps, it

is useful to convert to center of mass coordinates, in terms of which Eq. (2.2) becomes

−
(
~

2

me
∇2 +

e2

r

)
ψ(r) = Eψ(r). (2.3)

In spherical coordinates, r = (r, θ, φ),

∇2 =
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2
, (2.4)

and the Schrödinger equation is separable, which means that the wave function can be

separated into a product of functions of single variables, ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ).

9

2.1 Quantum Mechanical Description of Ps

Equation (2.3) can then be written as

1
r2

d

dr

(
r2dR

dr

)
=
[
`(`+ 1)
r2

− me

~
2

(
e2

r
+ E

)]
R (2.5)

sin θ
d

dθ

(
sin θ

dΘ
dθ

)
=
[
m2
` − `(`+ 1) sin2 θ

]
Θ (2.6)

d2Φ
dφ2

=−m2
`Φ. (2.7)

Equations (2.6) and (2.7) are familiar; the Φ equation is solved by sines and cosines

(which can be written as complex exponentials), and the Θ equation is solved by

associated Legendre functions:

Θ(θ)Φ(φ) = Pm`` (cos θ)eim`φ = Y`,m`(θ, φ), (2.8)

where m` can range from −` to `.

The solution to the radial equation, (2.5), can be found in the standard way, the

details of which are described in Appendix A. Using various substitutions, Eq. (2.5)

can be written in the form of Laguerre’s associated differential equation, and the full

radial wave functions are

Rn`(ρ) = Nn`e
−ρ/2ρ`L2`+1

n+` (ρ), (2.9)

where ρ = r/a0n is written in terms of the Bohr radius, a0 = ~
2/me2, L2`+1

n+` (ρ) are the

associated Laguerre polynomials, and Nn` is a normalization factor given by

Nn` =
[

(n− `− 1)!
2n [(n+ `)!]3

] 1
2

. (2.10)

Along the way to this solution in Appendix A, to satisfy a boundary condition, we

found that the energy levels are quantized,

|En| =
mee

4

4~2n2
, (2.11)

where n is known as the principle quantum number. Further, `, the azimuthal quantum

10

2.1 Quantum Mechanical Description of Ps

number, is constrained to lie between 0 and n− 1, inclusive. Note that each Ps energy

level is half of the corresponding hydrogen energy level; for instance, the Ps ground

state energy, for n = 1, is E1 = −6.8 eV = −0.25 atomic units (a.u.), compared to

-13.6 eV for hydrogen.

The complete wave function can be written by combining Equations (2.8) and (2.9):

ψnlm(r, θ, φ) = −
[(

2
(na0)3

)
(n− `− 1)!
2n [(n+ `)!]3

]1/2

e−ρ/2ρ`L2`+1
n+` (ρ)Y`,m`(θ, φ), (2.12)

where ρ = r/a0n.

Since our investigation is an equilibrium calculation based on the assumption that

Ps thermalizes quickly after entering a material, and the temperatures we are consid-

ering are such that kT � E1−E0, we are interested in the ground state wavefunction,

ψ100(r, θ, φ) =
(

1
8πa3

0

)1/2

e−r/2a0 . (2.13)

Note that this is identical to the ground state wavefunction for hydrogen except for the

factor of two in the exponential; this means that the positron and electron forming Ps

are most likely to be twice as far apart as the proton and electron forming hydrogen.

In our simulation, we calculate the radial probability density for Ps, P (r), which

gives the probability density of finding the positron and electron a distance r apart.

P (r) is formally obtained by multiplying the square of the wavefunction by a spherical

shell volume element. For the 1S state that we are considering, Eq. (2.13) leads to

P (r) =
r2

2a3
0

e−r/a0 . (2.14)

2.1.2 Ps Fine Structure Energy Corrections

The Hamiltonian given in Eq. (2.1) is not the whole story; various other effects, such as

spin, result in small perturbations to this Hamiltonian, which cause small corrections

in the quantized energy levels given by (2.11). The various perturbations to the Ps

energy summarized below are described by Griffiths [21]. The origins of some of the

energy corrections for Ps are similar to those for hydrogen, such as the relativistic

11

2.1 Quantum Mechanical Description of Ps

kinetic energy, spin-orbit coupling, and the Lamb shift, but they have different relative

magnitudes in Ps. For example, the Lamb shift, caused by the quantization of the

electromagnetic field, is of order α5mc2 in Ps, where α = e2/~c = 1/137 is the fine

structure constant, so we will ignore it in what follows. There are also new effects in

Ps that cannot be compared to the fine or hyperfine structure of hydrogen. All of these

are described below.

The Schrödinger equation uses a non-relativistic representation of the kinetic energy

of each particle, T̂ = p̂2/2m. Expanding the relativistic expression for kinetic energy

to the next order,

T̂rel =
√
p̂2c2 +m2c4 −mc2 =

p̂2

2m
+

p̂4

8m3c2
+ · · · . (2.15)

The ∆Erel =
〈
ψ
∣∣∣T̂ − T̂rel

∣∣∣ψ〉 induced by this change in the Hamiltonian is one-eighth

the size of the perturbation for hydrogen: the fact that there are two relativistic par-

ticles doubles it, and the fact that
〈
p̂4
〉

goes like (mc2)4 reduces it by a factor of 24.

Another perturbation is caused by the fact that each spinning particle is a dipole

and sees the other charged particle orbiting around it and creating a magnetic field.

In hydrogen, the electron spin combines with the relativistic correction to give the fine

structure, and the proton spin, reduced by a factor of me/mp, results in hyperfine

splitting. For Ps, however, this factor becomes unity, which means the hyperfine and

fine splittings are of the same order.

Some new corrections that are not relevant to hydrogen are due to the finite prop-

agation time for the electromagnetic field and to the possibility of virtual annihilation.

The former results from the fact that the positron, unlike the proton in hydrogen, can-

not be considered to be stationary. The second results from the fact that an electron

and positron can form a virtual photon, as illustrated in Figure 3. This correction is

proportional to |ψ(0)|2, since the two particles must be in the same place for “annihi-

lation” to occur.

12

2.1 Quantum Mechanical Description of Ps

Figure 3: Feynman diagram of the virtual annihilation of an electron and
positron. This causes the annihilation correction to Ps energy, which is
proportional to |ψ(0)|2.

These factors combine to give the total fine structure correction for Ps:

∆Efs =
α4mc2

2n3

[
11

32n
−

1 + ε
2

2`+ 1
+
δ`0δs1

2

]
(2.16)

where ε is given by

ε =

0 s = 0

− (3`+4)
(`+1)(2`+3) j = `+ 1, s = 1
1

`(`+1) j = `, s = 1
(3`−1)
`(2`−1) j = `− 1, s = 1

(2.17)

Note that the energy difference between o-Ps (s = 1, ` = 0) and p-Ps (s = 0, ` = 0)

ground states can be written as

∆Eo−p =
7
12
α4mc2. (2.18)

13

2.2 Ps in Solids

2.2 Ps in Solids

2.2.1 Internal Contact Density κ

Equation (2.16) was derived for free Ps, and a close reading of reference [21] shows

that, for the ` = 0 states, the prefactor contains the unperturbed wavefunction at the

origin,

α4mc2

2n3
= |ψ(0)|2 πe

2
~

2

2m2c2
. (2.19)

Inside a solid, however, the surrounding environment can change the amount of overlap

between the electron and positron, |ψ(0)|2, by pulling the particles apart or squeezing

them together. This change is described by κ, the internal (or relative) contact density

of Ps:

κ =
|ψ(0)|2

|ψfree(0)|2
. (2.20)

Eq. (2.13) shows that the denominator is 1/8πa3
0. We can write the center-of-mass

wavefunction at the origin in terms of the six-coordinate, two-particle wavefunction

defined in Eq. (2.2) as

|ψ(0)|2 =
∫
|φ(r+, r−)|2 δ(r+ − r−)d3r+d

3r−, (2.21)

where the Dirac delta function picks out only the overlap at the origin. The internal

contact density can thus be rewritten as [10]

κ = 8πa3
0

∫
|φ(r+, r−)|2 δ(r+ − r−)d3r+d

3r−. (2.22)

For unperturbed Ps, κ = 1, and κ will decrease or increase along with |ψ(0)|2. From

Equations (2.19) and (2.22), we see that the energy splitting between o-Ps and p-Ps

given in Eq. (2.18) is actually proportional to κ:

∆Eo−p =
7
12
κα4mc2. (2.23)

14

2.2 Ps in Solids

There is an additional contribution to the hyperfine splitting, due to the atoms in the

crystal, that is not proportional to κ, but this contribution is at most 5% of ∆Eo−p for

free Ps, so it can be neglected [10].

The internal contact density κ modifies the annihilation rates of p-Ps and o-Ps in

solids. As mentioned in the Introduction, the self-annihilation rate of Ps in vacuum is

about Γs0 = 8 ns−1 for the singlet state and Γt0 = 0.007 ns−1 for the triplet state [3],

and the annihilation rate is greater for the singlet state because the more common two-

photon annihilation cannot occur in the triplet state. If Ps becomes squeezed inside

a solid, however, the new self-annihilation rate is proportional to κ. There is also an

additional contribution to the annihilation rate due to the other electrons in the solid;

this is known as “pick-off” annihilation. As an elaboration of Eq. (1.1), we can say

that the annihilation rates for Ps in solids are thus given by

Γs =κΓs0 + Γp.o.,

Γt =κΓt0 + Γp.o., (2.24)

where Γp.o. is the rate of pick-off annihilation [10].

2.2.2 Solid Argon

We performed our simulation in solid argon because of the presence in the literature

of both experimental and theoretical results for this solid. For instance, rare-gas solids

like Ar have been studied for use as sources of slow positrons or of thermalized Ps

[22]. As will be discussed in Section 3.2.2, calculating the pseudopotential felt by the

electron is difficult, so to inaugurate our simulation method we used a system in which

this potential had already been studied in detail.

Argon forms a face-centered cubic (fcc) crystal lattice, which means that there is

an atom at each corner of the unit cell and at the center of each face, as illustrated in

Figure 4. One side of the unit cell has length a = 10.04 a.u. [23], where one atomic

unit of distance is 0.529177 × 10−10 m. The smallest structural unit of atoms used

to build a crystal is known as the basis. For Ar, the locations of the basis atoms are

(0, 0, 0), (a/2, a/2, 0), (a/2, 0, a/2), and (0, a/2, a/2) in Cartesian coordinates. An ideal

15

2.2 Ps in Solids

Figure 4: The face-centered cubic crystal lattice.

Ar crystal is generated when this basis is repeated an infinite number of times. It is

often convenient to know the lattice vectors for the Ar crystal,

a1 =a(ŷ + ẑ)/2, (2.25)

a2 =a(x̂+ ẑ)/2, (2.26)

a3 =a(x̂+ ŷ)/2, (2.27)

which allow us to work in either lattice vector coordinates or Cartesian coordinates.

Since the unit cell, of volume a3, contains eight corner atoms that are each shared

among eight unit cells and six atoms on the faces that are each shared among two unit

cells, the density of atoms in solid Ar is ρ = 4/a3.

Until the 1960s, elements in the “noble gas” group of the periodic table, such as

Ar, were considered to be inert gases due to their filled outermost (valence) shells. Ar

forms a solid crystal only below its melting point of 83.81 K, which corresponds to

β = 1/kT = 3895 a.u. [23]. Because Ar has a high ionization potential, the energy

of an incident positron must be over about 10 eV for it to strip off one of argon’s 18

electrons to form Ps. This is illustrated in Figure 5, which shows the results of an

experiment in which positrons were sent through an Ar surface with different incident

energies. Y+ is the percentage that were reemitted as positrons, YPs is the percentage

16

2.2 Ps in Solids

that were reemitted as Ps, and YS is the percentage that annihilated in the solid [24].

Figure 5: Positron behavior in solid Ar surface as a function of incident en-
ergy. The vertical axes represent the probability of (a) positron reemission,
(b) Ps formation, and (c) positron annihilation in the solid. [24]

Experiments have also indicated that both p-Ps and o-Ps can form in Ar. As

mentioned in the Introduction, the triplet state (o-Ps) cannot decay into two photons,

so experimentalists detect its presence by looking at the ratio of 3γ decays to 2γ decays.

This ratio was sufficiently high in Ar to confirm the presence of o-Ps [25].

Jean, Yu, and Zhou have studied positron annihilation in Ar, and after requiring one

of their lifetimes to be 125 ps (due to p-Ps), they fit their data to two other lifetimes:

340–390 ps (which they attributed to the annihilation of single positrons) and 2.1–2.5

ns (which they attributed to o-Ps self-annihilation). Since 2.5 ns is a longer lifetime

than anyone expects to see in a close-packed defect-free solid, they suggest that it is

due to the self-trapping of Ps in voids [26]. Gullikson and Mills, however, point out

that the long 2.5 ns lifetime is observed even at temperatures where there should be

no voids [27]. Our own results in Section 4 show that Ps does not fall into an available

17

2.2 Ps in Solids

void in Ar, so if self-trapping occurs, it involves a more dramatic rearrangement of

nuclei and electrons than is modeled by our potential together with the introduction

of a monatomic vacancy.

In 1967, E. J. Woll developed a model for the positron wavefunction and lifetime in

solid Ar by using the atomic sphere approximation (ASA). This allowed him to replace

the unit cell with a sphere of radius 3.92 a.u., where he used a = 9.94 a.u. as the

length of the Ar unit cell. He then numerically integrated the Schrödinger equation

as a function of the distance r from the center of this sphere [28]. He compared his

results to Liu and Robert’s 1963 experimental measurement of the inverse lifetime of

a single positron in Ar; they found Γ = 2.3 ns−1, which corresponds to a lifetime of

435 ps [29]. He found a much better agreement with this lifetime when he included

an attractive potential due to the virtual polarization of the electrons by the positron

[28]. The potential seen by the positron with and without the polarization potential

is seen in Figure 6. As will be seen in Section 4, the polarization potential causes the

Figure 6: The potential seen by the positron in solid Ar, using ASA. The
solid line includes the repulsion by the atomic cores, the Hartree attraction
by the outer electrons, and the polarization potential. The dashed line
shows the same potential without considering polarization. [28]

same effect in our simulation; there is a potential minimum around the Ar atoms, such

that the Ps does not even become trapped in the cavity formed by a missing atom.

Our calculation is different from Woll’s, however, in several important ways. We use a

18

2.2 Ps in Solids

realistic solid structure, not ASA. Also, we are modeling Ps, not just a positron, and

we have potentials for both the electron and the positron.

Unfortunately, we cannot compare everything we calculate in our simulation to

results in the experimental literature yet. Most notably, we have found no experimental

data on κ in Ar with which we can compare our own interesting result. Appendix D,

however, demonstrates how such a measurement could be accomplished, as it has been

for other materials. Future investigations will involve simulating Ps inside α-SiO2, in

which κ has been determined to be 0.31± 0.02 [30].

19

3 Computational Methods

3 Computational Methods

3.1 Path Integral Monte Carlo (PIMC)

As described in the Introduction, path integral Monte Carlo (PIMC) is one of the

many quantum Monte Carlo techniques that are used to simulate quantum systems

using pseudorandom number generators.

In quantum statistical mechanics, the expectation value of the observable associated

with the operator Â is given by

〈
Â
〉

=
1
Z

Tr[exp(−βĤ)Â], (3.1)

where exp(−βĤ) is called ρ̂, the density matrix. Z is the partition function, which can

be written in the position basis as

Z = Tr[exp(−βĤ)]

=
∫
dx
〈
x
∣∣∣exp(−βĤ)

∣∣∣x〉
=
∫
dx1 · · ·

∫
dxP

〈
x1

∣∣∣∣e−βĤP ∣∣∣∣x2

〉
〈x2 |· · ·|xP 〉

〈
xP

∣∣∣∣e−βĤP ∣∣∣∣x1

〉
, (3.2)

inserting P − 1 complete sets of states. Using the Hamiltonian for one particle in one

dimension under a potential V (x), and making the approximation that, for large P ,

20

3.1 Path Integral Monte Carlo (PIMC)

the kinetic and potential energy operators commute,〈
x

∣∣∣∣e−βĤP ∣∣∣∣x′〉 =
〈
x

∣∣∣∣e− p̂2

2m
β
P
− V̂ β

P

∣∣∣∣x′〉
≈
〈
x

∣∣∣∣e−βV̂2P e−
p̂2

2m
β
P e−

βV̂
2P

∣∣∣∣x′〉
=e−

β
2P

(V (x)+V (x′))

〈
x

∣∣∣∣e− p̂2

2m
β
P

∣∣∣∣x′〉
=e−

β
2P

(V (x)+V (x′))

∫ 〈
x

∣∣∣∣e− p̂2

2m
β
P

∣∣∣∣ p〉〈p ∣∣x′ 〉 dp
=e−

β
2P

(V (x)+V (x′))

∫
e−

p̂2

2m
β
P
e
ipx
~

√
2π~

e
−ipx′
~

√
2π~

dp

=e−
β

2P
(V (x)+V (x′)) 1

2π~
e
− mP

2~2β
(x−x′)2

∫ ∞
−∞

e
− β

2mP

(
p−mPi(x−x

′)
β~

)2

dp

=
(

mP

2πβ~2

)1/2

e
− mP

2~2β
(x−x′)2

e−
β

2P
(V (x)+V (x′)). (3.3)

Substituting this result into Eq. (3.2) for the partition function gives

Z =
(

mP

2πβ~2

)P
2
∫
dx1 · · · dxP exp

[
P∑
i=1

− mP

2~2β
(xi − xi+1)2 − β

2P
(V (xi) + V (xi+1))

]

=
(

mP

2πβ~2

)P
2
∫
dx1 · · · dxP exp

[
−β

(
k

2

P∑
i=1

(xi − xi+1)2 +
1
P

P∑
i=1

V (xi)

)]
, (3.4)

where k = mP
β2~2 and xP+1 = x1. As shown in Appendix B, this partition function (aside

from the prefactor) is equivalent to the partition function for a classical ring polymer of

P beads coupled by harmonic springs of constant k, where each bead feels a potential
V (x)
P . This approximation is called the “primitive” approximation and is only valid for

large P and high temperatures (low β); specifically, Binder claims,

P

β
� ~

2

mσ2
, (3.5)

where σ is the characteristic distance over which the potential changes [16].

The above discussion considers a one-dimensional variable, x, which describes a

single particle in one dimension. For our investigation, this result was extended to

21

3.1 Path Integral Monte Carlo (PIMC)

a six-dimensional variable, (r+, r−), which describes two particles moving in three

dimensions. The Ps atom is thus modeled as two interacting cyclic polymer chains, each

of length P . The two chains interact via a Coulombic potential, as will be described in

Section 3.2. Models of a single positron and of Ps treated by this method are illustrated

in Figure 7.

Figure 7: Models of quantum particles treated using PIMC. On the left
is a single positron represented as a ring of beads that interact with their
closest neighbors via a harmonic potential. On the right are a positron
and an electron; each positron bead has a Coulombic interaction with the
electron bead in the corresponding position, represented by the thick black
lines. In our code, each particle is represented by thousands of beads, rather
than the eight pictured here.

Equation (3.4) gives the path integral representation of the partition function. The

“Monte Carlo” part of PIMC refers to the probabilistic method of treating this system.

Obviously, all possible configurations of beads cannot be examined, so measurements

are taken on a random selection. Instead of choosing equally from all possible states,

and then weighting them by their Boltzmann factor (exp(−βU)), it makes more sense

to choose states with probability exp(−βU), and to then weight them equally. This

is the standard Metropolis algorithm [31], which is known as an importance sampling

technique. One pass through the Metropolis algorithm is described here, with the

corresponding line numbers for our PIMC code (Appendix E).

1. A new configuration of beads is determined by moving a random portion of each

of the old chains to a new position, using a Gaussian distribution. This is accom-

plished in the tryboth subroutine of our code, lines 773-817.

2. The potential energy difference of the new state relative to the present state, δU ,

is calculated. This is done in lines 591-643, and the energy difference times the

22

3.1 Path Integral Monte Carlo (PIMC)

effective β is stored in the variable vchange.

3. If δU ≤ 0, the new state is accepted. Otherwise, a random number 0 ≤ η ≤ 1 is

generated, and the new state is only accepted if exp(−βδU) > η. This condition

can be rewritten as −βδU > log η, which is what we use in lines 644-651 of our

code. The variable det stores the value of −βδU , and the variable de stores the

value of log η.

For a starting configuration, the beads in each chain are randomly placed in a Gaus-

sian distribution about the origin, as illustrated in Figure 8. This is accomplished in the

init_beads subroutine in lines 471-543 of the PIMC code. A Gaussian distribution is

chosen because it is appropriate for a free quantum particle. We can see from Figure 9

that the final distribution of beads about their center of mass retains this same general

shape, although each chain contracted due to the presence of the other.

Figure 8: The beads representing the positron and electron are initially
placed in a Gaussian distribution about the origin. This histogram shows
the initial distribution of the x, y, and z coordinates of two 4000-bead
chains. All of the x coordinates for both the positron and electron are
shown in one shade of grey, and the y and z coordinates are the other
shades.

When a section of a chain is moved during the first step of the Metropolis algorithm

in our tryboth subroutine, the probability of moving a bead a certain distance from its

original position is also given by a Gaussian distribution. The width of this distribution,

23

3.1 Path Integral Monte Carlo (PIMC)

Figure 9: After several million passes through the Metropolis algorithm,
the distribution of beads about their center of mass still maintains the
general shape seen in Figure 8. The narrower width of the figure indicates
that the beads have contracted from their starting configuration. This
histogram shows the distribution of the x, y, and z coordinates of two
1000-bead chains, representing “free” Ps, in their final configuration. As in
Figure 8, the different shades of grey represent the x, y, and z coordinates.

however, depends on the position of the bead in the chain, since the likelihood of

a particular bead placement being favorable is conditional on the placements of its

neighbors. We therefore decrease the Gaussian width as we move successive beads,

using a recursive method developed by Levy [32].

In our code, the length of chain that is moved at each pass is adjusted every ten

passes to keep the percentage of accepted moves around 50 percent. This typical

portion of the chain that is redistributed at each pass is between 3 and 7 percent for

the chain lengths used in this study. Also, every ten passes, instead of moving a portion

of the current chain, a center-of-mass move is attempted using the same Metropolis

algorithm; the entire chain is transposed by up to 0.1 a.u. in each of the Cartesian

directions. Since the majority of these center-of-mass moves are accepted, this allows

the beads to sample a greater region within the Ar unit cell.

After a large number of passes, the system will settle into the states with the lowest

free energy. We can measure some property by recording its value at each pass and

averaging these measurements, as Eq. (3.1) suggests. For example, we calculate the

24

3.2 Ps Energy

radial distribution function, P (r), which gives the likelihood of finding the electron and

the positron a distance r apart, by forming a histogram of the relative distance between

each pair of electron and positron beads at every pass. Section 3.2 will describe how

we measure the energy of the particles, Section 3.3 will describe measuring the overlap

between the two particles, and Section 3.4 will describe the pair correlation function,

which is used to obtain information about where Ps is located in the crystal lattice.

3.2 Ps Energy

As seen in Section 3.1, the PIMC method depends on calculating the likelihood of a

given Ps configuration. Calculating this, however, is one of the more subtle parts of the

problem, since we need to determine the likelihood due to the Coulombic interaction

of the Ps particles as well as the energy due to the surrounding atoms in the crystal.

The former problem is dealt with using the Pollock propagator, which actually does

not use the Coulomb energy, but takes a more fundamental approach. This propagator

will be described in Section 3.2.1. To determine the potential felt by the positron

due to the surrounding Ar atoms, we use a technique called density functional theory

(DFT), as described in Section 3.2.3. The external potential felt by the electron is

difficult to calculate, and we use a phenomenological form based on experimental data,

as described in Section 3.2.2.

The δU used in the Metropolis algorithm is simply the potential energy difference

between two different states. To model Ps accurately, therefore, we only need estimate

the potential energy of the particles in a given configuration. The kinetic energy is also

of interest, however, for comparison with theoretical and experimental results. Section

3.2.4 contains a discussion of kinetic energy estimators.

3.2.1 Electron-Positron Interaction: The Exact Coulombic Propagator

A real positron and electron interact via the Coulomb potential,

Vcoul = −e
2

r
, (3.6)

25

3.2 Ps Energy

where r is the relative distance between the two particles. For our computer simulation

using the approximation of Eq. (3.4), however, this potential would result in the two

chains of beads collapsed on top of each other, unable to escape the negative infinity

at the origin.

One solution to this problem, used in our earlier work, is to use the Yukawa poten-

tial,

Vyuk = −e
2

r
[1− exp(−r/a)], (3.7)

and to extrapolate the results to the limit a → 0. Müser and Berne have shown that

as a → 0 and P → ∞, the Yukawa potential results in the correct path integral for

the Coulomb system [33]. In earlier work, we have used this potential to generate the

correct 1s state for free Ps, and thence to model Ps in a hard spherical well [20].

For this thesis, however, we used an approach developed by Roy Pollock, which

takes advantage of the fact that free Ps can be solved exactly, as seen in Section 2.1.

At a temperature β, the Coulomb pair density matrix is given by

ρ(r, r′;β) =
〈
r
∣∣∣e−βĤ ∣∣∣ r′〉

= 〈r| e−βĤ
∑
s

|ψs〉
〈
ψs| r′

〉
=
∑
s

e−βEs 〈r |ψs 〉
〈
ψs| r′

〉
=
∑
s

e−βEsψ(r)ψ∗(r′), (3.8)

where r and r′ represent the relative coordinates between the positron and the electron,

and the sum is over the Coulomb potential energy eigenstates. This can also be written

as

ρ(r, r′;β) =
exp

(
−(r − r′)2/2~

2

µ β
)

(
2π ~2

µ β
)3/2

e−P (r,r′;β), (3.9)

where this equation can be considered a definition for P (r, r′;β), which is the part of

26

3.2 Ps Energy

ρ that exists due to the Coulomb interaction [34, 35]. In our code, the current positron

and electron separation is r, and the separation of the next two beads along the chain is

r′. We are able to determine the P (r, r′;β) associated with a particular configuration

of our Ps chains by looking up each state in a table that contains the exact solution

for P from Pollock’s code [35, 36]. By using the exact Coulombic propagator, we

assume that the wave function of Ps in a solid is a perturbation of the free Ps wave

function. While this is a reasonable assumption in Ar, it remains to be seen whether

it is appropriate in highly-polarizing solids [36].

3.2.2 Electron External Potential: Phenomenological Model

As described in Section 2.2.2, argon’s 18 electrons completely fill its orbitals, so it is

generally inert. An extra electron placed in the midst of Ar atoms will be attracted to

the positive nucleus and repelled by the electrons. Due to Ar’s polarizability, α, the Ar

electrons will be pushed away from the extra electron, drawing it toward the nucleus.

Because modeling this interaction between an electron and an atom is very complicated,

we chose to begin with the Ar system because its details have been extensively studied.

Other researchers have examined the effect of placing an extra electron on an Ar

atom and have developed a pseudopotential to describe this interaction [37]. This

potential is a phenomenological form, which means that it is based on fitting parame-

ters to experimental results, and we additionally include a polarization potential. By

adding the polarization potential, which extends from the nucleus like −α/2r4, to the

experimental results without polarization, which decrease from some constant value at

the nucleus, we obtain a slight potential well. We can write the potential felt by an

electron a distance r from a single Ar nucleus as

V−(r) = −31.6712e−1.78984r + 127.081e−2.2r − 5.43
(r2 + 0.7)2

, (3.10)

where the first two terms are phenomenological and the last is a method of calculating

the polarization potential [37].

We assume that the potential due to many Ar atoms is approximately the superpo-

sition of the potential due to each Ar atom individually. The clust_elec subroutine in

27

3.2 Ps Energy

our cluster_elec module creates a list of Ar atoms within 15 a.u. of the sphere that

circumscribes the unit cell. These are assumed to be those atoms that would contribute

to the potential of an electron within the unit cell. (For Ar without a monovacancy,

this turns out to be 164 atoms.) The potential at each bead due to this cluster of atoms

is determined by the eval_pseudo function in our epot module, which is not included

in this thesis.

Figure 10 shows the potential felt by an electron in solid Ar using our method,

and Figure 11 shows the potential felt by an electron in Ar with a monovacancy. The

most energetically favorable regions for the electron are the lighter ones, and the dark

circles are slices through the Ar atoms, which are prohibited to the electron. Note that

the monovacancy is not as attractive to the electron as the areas closer to the crystal

atoms, an effect due to the polarization potential.

3.2.3 Positron External Potential: Density Functional Theory (DFT)

The density of electrons and the potential felt by the positron can be found using

density functional theory (DFT), a technique developed by Hohenberg, Kohn, and

Sham in the 1960s for expressing the ground state properties a system as a function of

the electron density. The basic theory behind this technique is described in Appendix

C. As for the electron, there are competing effects due to the nuclei and the electrons

of the Ar atoms, as well as a polarization potential of the form −α/2r4, which result in

a potential due to a single Ar atom that is qualitatively similar to Woll’s potential in

Figure 6. The potential felt by a positron a distance r from a single Ar atom is given

by

V+(r) =
18e2

r
−
∫
e2ρ−(r′)
|r′ − r|

d3r′ − Vp(r), (3.11)

where Vp(r) is a polarization term based on a calculation by Gibson, which insures that

V+(r) approaches −α/2r4 as r →∞ [38].

For this investigation, we began with a DFT-generated file containing the potential

at each point in a 40×40×40 spatial grid over the unit cell. To determine the potential

at the location of a given bead in our PIMC code, we use a cubic spline fit to the data

28

3.2 Ps Energy

Figure 10: Slices through the potential felt by an electron in solid Ar.
Eight unit cells are shown here. Light shading represents a region preferred
by the electron, and dark shading represents an energetically unfavorable
region. The black circles are slices through the Ar atoms, which are pro-
hibited to the electron.

Figure 11: Slices through the potential felt by an electron in Ar with a
monovacancy in the middle of an eight-unit-cell block. The monovacancy
is not as attractive to the electron as areas closer to the crystal atoms.

29

3.2 Ps Energy

stored in this file. This is accomplished using the evalVcg function in the module

vcGrid, which is called at line 618 in Appendix E.

Figure 12 shows the potential felt by a positron in solid Ar, and Figure 13 shows the

potential felt by a positron in Ar with a monovacancy. Note the similarities to Figures

10 and 11. The external potential felt by the electron and positron are not identical:

for instance, the positron potential goes to infinity at the origin, whereas the electron

potential goes to a finite number. In both cases, however, the monovacancy is less

energetically attractive than the surrounding area, due to the polarization potential.

3.2.4 Kinetic Energy Estimators

For this investigation, we have used the “kinetic” or Barker estimate for the Kinetic

energy, given by [39, 20]

〈Tkin〉 =

〈
3P
β
− mP

2

∑
∗=+,−

P∑
i=1

(
r∗i−1 − r∗i

)2
~

2β2

〉
. (3.12)

Because we are subtracting two large numbers in the hope of obtaining approximately

0.25 a.u., we should not be surprised by the errors that result. Developing better meth-

ods of estimating the kinetic energy of Ps in a solid is an area for future investigation.

In our earlier work, we found that another estimator of the kinetic energy, the virial

estimator, resulted in smaller errors for our Ps systems. The virial estimator uses the

relationship between the average kinetic energy and the average potential energy to

indirectly determine the kinetic energy, reminiscent of orbital motion problems in clas-

sical mechanics. Like the classical statement of the virial theorem, the virial estimator

relates the kinetic energy to the gradient of the potential [40]:

〈Tvir〉 =

〈
1

2P

∑
∗=+,−

P∑
i=1

ri · ∇iV (ri)

〉
. (3.13)

Despite the virial estimator’s success in the case of Ps in a hard cavity [20], we switched

back to the kinetic estimator when we began modeling Ps in solids due to the greater

difficulty of calculating the numerical derivative of the potential. The vcGrid module

30

3.2 Ps Energy

Figure 12: Slices through the potential felt by a positron in solid Ar.
Eight unit cells are shown here.

Figure 13: Slices through the potential felt by a positron in Ar with a
monovacancy in the middle of an eight-unit-cell block.

31

3.3 Ps Lifetime: Enhancement Factor γ

for calculating the external potential felt by the positron currently contains a subroutine

that can find the gradient of the potential, but we did not yet have an opportunity to

test this procedure.

Another idea for estimating the kinetic energy uses the fact that by using the Pollock

propagator, we know the Ps density matrix. From quantum statistical mechanics, we

know that we can write the average energy of an ensemble as

〈E〉 = − 1
β

∂ lnZ
∂β

. (3.14)

The partition function, as we saw in Eq. (3.2), is simply the trace of the thermal

density matrix, and there are tools in Roy Pollock’s Table module that will allow us to

calculate its derivative with respect to β [35]. This will hopefully be utilized in some

future work.

3.3 Ps Lifetime: Enhancement Factor γ

The lifetime of Ps in a solid is easily measured experimentally and can reveal infor-

mation about the solid (as in Figure 2), so it is important to determine accurately

the Ps lifetime in our simulation. In general, the annihilation rate of Ps due to the

surrounding solid (the pick-off annihilation rate) can be written as

Γp.o. = τ−1 = πr2
ec

∫
dr−dr+ρ+(r+)ρ−(r−)γ[ρ−(r−)]δ(r− − r+), (3.15)

where re = e2/mec
2 is the classical electron radius, ρ+(r+) is the positron density,

ρ−(r−) is the density of Ar’s electrons, and γ is the so-called enhancement factor,

which is in general a functional of the electron density [41]. Setting γ = 1 gives the

independent-particle model (IPM), which ignores exchange-correlation effects, resulting

in lifetimes that are much longer than those observed in experiments.

M. J. Puska’s research group in Finland has be working to develop better models

for γ that more accurately reproduce experimental results. Their insulator model (IM),

32

3.4 Pair Correlation Function g(r)

which describes Ps in insulators such as Ar, gives the annihilation rate as

ΓIM = ΓIPM

(
1 +A+BΩ

(ε− 1)
(ε+ 2)

)
, (3.16)

where ε = 1.66 for Ar, Ω = 10.043/4 is the unit cell volume, and A = 0.684 and B =

0.0240 are experimentally determined parameters [42]. For Ar, the term in parentheses

in Eq. (3.16) is a correction factor of magnitude 2.78.

In our code, we calculate
∫
ρ+ρ−d

3r and multiply this by πr2
ec = 50.469 to obtain

ΓIPM. We then multiply ΓIPM by 2.78 to obtain ΓIM, which is the pick-off annihilation

rate for Ps in Ar. If κ is also known for Ps in Ar, we can then calculate the total singlet

and triplet annihilation rates using Eq. (2.24).

3.4 Pair Correlation Function g(r)

A complete description of the location of a positron in a system containing N crystal

atoms requires a probability function of 3(N + 1) variables, P (r+, r1, . . . , rN). The

theory of fluids offers a reduced description of this quantity, the pair correlation function

g(r), which gives the probability of observing any crystal atom a distance r from the

positron. g(r) is normalized by the number of atoms in the crystal, [43]∫ ∞
0

ρg(r)4πr2dr = N, (3.17)

where ρ = 4/a3 is the density of atoms in the fcc crystal lattice. Thus, g(r) levels off at

unity at distances far from the origin. We see from Eq. (3.17) that N(r) ≡ ρg(r)4πr2dr

is the number of atoms between r and r+ dr from the positron [43]. By measuring the

distance between each bead and each crystal atom during every pass and placing these

measurements in a histogram, a process known as “binning,” we are able to graph this

quantity, N(r). The bead-atom pair correlation function is then

g(r) =
N(r)

ρ4πr2∆r
, (3.18)

where 4πr2∆r is the volume of each bin.

33

3.5 Practical Details: Hardware and Software

3.5 Practical Details: Hardware and Software

Our PIMC code was written in FORTRAN 90 and was run on a Linux workstation

at LLNL as well as on Swarthmore’s AppleSeed parallel supercomputing cluster. The

AppleSeed cluster consists of about ten networked Macintosh G4 computers that share

information using the Message Passing Interface (MPI) library [44]. Because our algo-

rithm involves averaging many independent chain configurations, we parallelized our

code by simply having each networked computer perform its own calculation, and then

averaging the statistics. The computers then spend little time passing data or waiting

for another computer to finish a calculation.

As seen in the code included in Appendix E, the modifications required for this

parallelization scheme are minimal, making it easy to transfer to a Linux workstation.

In the lines 1108-1112 of the Initialize subroutine, the “master” node connects to the

“slave” computers to tell them to start running the PIMC program. After all computers

have completed the main MC_passes loop of the program, the data is sent from the

slave computers to the master node using the MPI_SEND and MPI_RECV commands, as

seen in lines 285-435. Quantities that are best averaged, such as the radial distribution

function, the Cartesian binning of beads in the lattice, and the pair correlation function

g(r) are added together by the master node. Other results, such as the averaged energy

at each step and the annihilation rate, are left as individual estimates to give a better

approximation for the error.

34

4 Results

4 Results

We have examined Ps in defect-free fcc Ar and in Ar with a monovacancy, using the

potentials that were illustrated in Figures 10-13. We have also simulated free Ps in

order to compare these results with the theoretical energy from Eq. (2.11) and radial

distribution function from Eq. (2.14). This thesis represents the first study, to our

knowledge, of free Ps or Ps within a solid where the positron and electron are simulated

as having independent degrees of freedom, using their exact Coulombic propagator. All

of the Ps results presented here were collected from one million passes of our algorithm,

after equilibrating for at least one million passes. Equilibration is necessary because the

initial position of the beads is extremely unlikely to be a thermodynamically favorable

one, and it would thus be incorrect to include measurements of these states in the

statistical averages.

4.1 A Single Positron in Ar

Before examining the Ps results, we should consider how to determine the input pa-

rameters β and P . As seen in Eq. (3.5), P must be significantly larger than β for the

PIMC approximations to be valid. In practice, the meaning of “significantly larger”

is determined by experimenting with a system with known results, such as free Ps, to

find the largest ratio of β/P that still yields accurate results. This ratio is known as

the effective inverse temperature, βeff , and we generally used 1
8 ≤ βeff ≤ 1

12 .

Ar is only in the solid form below its melting temperature, which corresponds to

values of β above 3895 a.u., as noted in Section 2.2.2. This high value of β, however,

results in an undesirably long computation time because of the necessarily large values

of P . To determine whether accurate simulations could be performed at higher temper-

atures, we calculated results at a variety of temperatures for a single positron in solid

Ar. The computation time for a positron is significantly less than for Ps; the single

chain means that the Pollock propagator and the electron external potential need not

be calculated.

Statistics for the simulated positrons were collected over 100 to 200 thousand passes

on each of seven AppleSeed computers, after allowing each system to equilibrate for 50

35

4.1 A Single Positron in Ar

to 200 thousand passes. These seven runs were then used to obtain average measure-

ments and uncertainties. For example, the lifetime results for the run at β = 4000 a.u.,

or T = 82 K, is shown in Figure 14.

Figure 14: Cumulative average of positron lifetime from 100k passes of
statistics, after 200k passes of equilibration. The thin dashed lines show
results from the seven AppleSeed computers, and the thick solid line is their
average. From this graph, we conclude that the lifetime is 510± 5 ps.

Table 1 shows the energy and lifetime from our positron simulation at three different

temperatures, one of which is below the Ar melting point. It is clear that decreasing the

Table 1: Energy and Lifetime of a Positron in Solid Ar
P β (a.u.) Potential E (a.u.) Lifetime (ps)
2k 400 −0.0850± 0.0005 509± 5
12k 2400 −0.0850± 0.0005 511± 5
20k 4000 −0.0850± 0.0005 510± 5

temperature (increasing β) has no significant impact on the important results of our

simulations. Changing the temperature does have effects on the system (for example,

the de Broglie wavelength of each particle scales as 1/
√
T), but it seems that the

particles sample the same regions of the crystal as we increase the temperature. We

therefore chose β around 100 to 400 a.u. for our Ps measurements.

36

4.1 A Single Positron in Ar

Figure 15: Positron density in fcc Ar at β = 400 a.u. Light areas represent
high positron density. The dark areas correspond to the locations of the Ar
atoms, where the positron density is expected to be zero.

Since we are modeling a single positron that is not bound to any particular electron,

it will have to annihilate via “pick-off” annihilation. We can thus use the pick-off

annihilation rate calculated by our code to find the lifetime of a single positron in

Ar, as shown in Table 1. These results are somewhat higher than Liu and Robert’s

experimental lifetime of 435 ps [29] or Jean, Yu, and Zhou’s experimental lifetime of

340-390 ps.

We can also compare the potential felt by our positron in Ar, −0.0850 = 2.31

eV, to the calculations in the literature. Our result is in good agreement with two

results which come from positron DFT with slightly different potential models for the

polarization of Ar: 2.13 eV and 3.32 eV [22]. All of these theoretical results are slightly

higher than the experimental measurement of 1.55± 0.05 eV [45].

Figure 15 shows the positron distribution throughout the Ar lattice at β = 400 a.u.

It is clearly sampling the entire available area, while avoiding the Ar atoms. Comparing

this to Figure 12 shows that the simulated positron prefers areas of lowest potential, as

expected. Because a single positron samples much more space inside the Ar lattice than

37

4.2 Ps in Ar with and without a Monovacancy

a Ps atom, it is hard to obtain such clear results from binning the three-dimensional

Ps distribution. For this reason, we calculate the pair correlation function g(r), as will

be discussed in Section 4.2.2.

4.2 Ps in Ar with and without a Monovacancy

4.2.1 Radial Distribution and κ

Figure 16 shows the radial probability density for the relative coordinate between the

electron and positron, P (r), which is the likelihood of finding the particles separated

by a distance r. The solid line gives the 1S exact theory from Eq. (2.14), which

closely matches the results from our simulation of free Ps, shown by the diamonds.

Interestingly, the crosses and circles, which represent Ps in Ar with and without a

monovacancy, respectively, are indistinguishable.

Figure 16: Radial distribution function, P (r), for Ps in Ar. r is the
relative coordinate between the positron and electron. Solid line: 1S exact
theory for free Ps. Diamonds: Free Ps simulated by our code. Circles: Ps
in fcc Ar. Crosses: Ps in Argon with a monovacancy.

Figure 17 shows P (r)/r2 = 4π|ψ(r)|2 for our different simulations. From Eq. (2.14),

38

4.2 Ps in Ar with and without a Monovacancy

we see that the 1S theory for free Ps is

P (r)
r2

=
1
2
e−r (4.1)

in atomic units; this is shown by the solid line in Fig. 17. Our simulation of free Ps

Figure 17: Radial distribution function, P (r), divided by r2. Solid line:
1S exact theory. Diamonds: Free Ps simulation. Circles: Ps in fcc Ar.
Crosses: Ps in Ar with a monovacancy. Solid and dashed lines are curve
fits: results for free Ps were fit to 0.50e−1.00r, the results for Ps in fcc Ar
were fit to 0.63e−1.05r, and the results for Ps in Ar with a monovacancy
were fit to 0.62e−1.05r, where all uncertainties are in the last digit.

exactly matches this theory; the best fit to our results was P (r)/r2 = 0.50e−1.00r. The

wavefunction for Ps in Ar is squeezed, just as for Ps in a hard spherical cavity [20];

fitting the results for fcc Ar and Ar with a monovacancy gave P (r)/r2 = 0.63e−1.05r

and P (r)/r2 = 0.62e−1.05r, respectively. From these curve fit parameters we calculate

the internal contact density of Ps in Ar to be approximately

κAr =
|ψAr(0)|2

|ψfree(0)|2
=

0.625
0.50

= 1.25. (4.2)

This value of κ can be used in Eq. (2.24) to find the total annihilation rate of o-Ps

in Ar, as will be see in Section 4.2.3. The effect of κ on the annihilation rate may not be

39

4.2 Ps in Ar with and without a Monovacancy

experimentally observable, since the pick-off annihilation rate Γp.o. is much larger than

the Γt0. κ can be measured in a clever way, however, from the hyperfine interaction, as

Section 2.2.1 and Appendix D show.

In the materials in which κ has thus far been measured, it has always been found to

be less than one [10, 30]. Given our potential, it makes sense that the Ps wavefunction

should be compressed, and that κ should be slightly greater than one. Using the

magnetic quenching method described in Appendix D, experiments could be performed

to check our result. We also plan to check our methods by simulating Ps in α-SiO2, in

which κ has already been measured [30].

4.2.2 Pair Correlation Function

Figure 18 shows the bead-atom correlation function for the positron in Ps, in fcc Ar

and Ar with a monovacancy, calculated using Eq. (3.18). As is to be expected, there

is no probability of finding a positron in the same location as an atom, and g(r) levels

off to unity far from the origin, as described in Section 3.4. Although the Ps atom

is delocalized, just like an atom in a fluid, it has certain preferred spots that can be

ascertained from the peaks in g(r). We see, for example, that the positron is very likely

to be 4 a.u. or 10 a.u. away from an Ar atom, but less likely to be 7 a.u. away.

From the similarity of the g(r) function for Ps in Ar with and without a monova-

cancy, we see that the Ps atom is likely to be found in similar locations in these two

crystals, as suggested by the slices through the potential files seen in Figures 12 and

13. The two g(r) functions are not, however, identical. In Ar with a monovacancy, the

bead-atom g(r) function (shown by the crosses in Figure 18) has a higher first peak

around 4 a.u. than the g(r) function in fcc Ar, and then it levels off more quickly. This

suggests that in Ar with a monovacancy, Ps does not move around quite as much as it

does in fcc Ar, perhaps because it is able to rest in the potential well due to a single

Ar atom rather than being pulled between two neighboring atoms.

To better understand what our g(r) function tells us about the location of Ps in Ar,

we can compare it to what we would see if a point Ps were fixed to a specific location in

the lattice. Since the Ar atoms are already fixed in a periodic lattice, fixing Ps would

40

4.2 Ps in Ar with and without a Monovacancy

Figure 18: Pair correlation function g(r) for Ps in Ar. Circles: Ps in fcc
Ar. Crosses: Ps in Argon with a monovacancy.

cause g(r) to have sharp peaks instead of the gentle bumps seen in Figure 18. Figure 19

shows what g(r) would look like if Ps were fixed at one of the potential minima, which

turn out to be directly between two adjacent Ar atoms. For example, one potential

minimum is located at (10.04/4, 10.04/4, 0). The sharp peak at the beginning of this

pair correlation function, just before 4 a.u., is due to the two closest atoms, which are

each
√

2× (10.04/4)2 = 3.55 a.u. away. From the first peak in the calculated g(r) in

Figure 18, we know that Ps is very likely to be found about 4 a.u. away from an Ar

atom, so this potential minimum is a probable location.

Figure 20 shows what g(r) would look like if a point Ps were fixed at the mono-

vacancy in Ar. The first sharp peak is due to the atoms on the closest faces, which

are each
√

2× (10.04/2)2 = 7.10 a.u. away. If the center of the monovacancy were the

preferred location of Ps, we would not see the first peak in Figure 18 at 4 a.u. We

conclude that Ps avoids the monovacancy.

It is likely that the monovacancy is not attractive to Ps because of the polarization

potential, which causes it to remain close to the Ar atoms. This is reminiscent of the

findings of Woll over thirty years ago; although his model is somewhat simplistic, he

correctly found that the positron is not simply repelled from the Ar atoms, collecting

41

4.2 Ps in Ar with and without a Monovacancy

Figure 19: This is what g(r) would look like if a point-sized Ps atom
were fixed to the potential minimum at (2.51 a.u., 2.51 a.u., 0.0). Because
the first sharp peak occurs around the same location as the first peak in
the actual g(r) for Ps in Ar with or without a monovacancy, Ps probably
spends a lot of time at this location in the lattice.

Figure 20: This is what g(r) would look like if the a point Ps atom were
pinned at the monovacancy in Ar. We see that the closest Ar atom is 7
a.u. away. Since the first peak in Figure 18 is around 4 a.u., we again see
that the monovacancy is not attractive to Ps.

in voids or defects. Rather, there is a potential well around each Ar atom for both the

electron and the positron, and, in a lattice of this size, there is no force driving Ps into

the monovacancy.

42

4.2 Ps in Ar with and without a Monovacancy

4.2.3 Energy and Lifetimes

Table 2 presents several results for the energy of free Ps. Although the Pollock prop-

agator was used for determining whether to accept a new configuration in the PIMC

algorithm, the Yukawa potential, with the parameter a from Eq. (3.7) set to 0.1, was

used for calculating the potential energies shown here. This will be corrected in future

investigations, but it does not seem to limit the accuracy of the results; the potential

energy measurements for free Ps are very close to the expected −0.5 a.u. The kinetic

energies, however, are systematically high by about 0.05 a.u., since we expect to add

the kinetic and potential energies to obtain a total energy of −0.25 a.u., as seen from

Eq. (2.11).

Table 2: Energy of free Ps
P β (a.u.) Energy (a.u.) Potential E (a.u.)
1k 100 -0.208 -0.500
1k 100 -0.209 -0.503
1k 100 -0.212 -0.500

Table 3 gives the energy and inverse lifetime for several simulations of Ps in fcc Ar,

and Table 4 gives the same quantities for Ps in Ar with a monovacancy. Though it is

necessary to generate more results, it seems that Ps in Ar with a monovacancy has a

slightly longer lifetime than Ps in fcc Ar.

Table 3: Energy and Lifetime of Ps in FCC Ar
P β (a.u.) Energy (a.u.) Potential E (a.u.) Γp.o. (ns−1)
4k 400 -0.322 -0.699 1.45
4k 400 -0.265 -0.694 1.45
4k 400 -0.306 -0.697 1.42
1k 100 -0.316 -0.702 1.40
500 50 -0.288 -0.710 1.38

As mentioned in Section 2.2.2, Gullikson and Mills noted that the long o-Ps lifetime

in solid Ar measured by Jean, Yu, and Zhou is present even when there should be no

vacancies in the sample [27]. We also see little difference in our calculated lifetimes

43

4.2 Ps in Ar with and without a Monovacancy

Table 4: Energy and Lifetime of Ps in Ar with a Monovacancy
P β (a.u.) Energy (a.u.) Potential E (a.u.) Γp.o. (ns−1)
4k 400 -0.328 -0.679 1.27
4k 400 -0.311 -0.686 1.31
4k 400 -0.316 -0.674 1.23
1k 100 -0.305 -0.697 1.38
500 50 -0.276 -0.701 1.33

for Ps in Ar with or without a monovacancy, although the numbers we obtain are

somewhat different from experiment, as will be discussed presently.

By putting the value of κ from Eq. (4.2), the accepted experimental result of 0.007

ns−1 for Γt0, and our calculated pick-off annihilation rate Γp.o. into Eq. (2.24), we can

now determine the annihilation rate of o-Ps in Ar. Averaging the results for Γp.o. in

fcc Ar, we obtain

Γt =κΓt0 + Γp.o.

=1.25× 0.007 ns−1 + 1.42 ns−1

=1.43 ns−1, (4.3)

which corresponds to a lifetime of 700 ps; the standard deviation from the different

trials gives an error of ±15 ps. A similar analysis results in a lifetime of 760 ± 30 ps

for Ar with a monovacancy.

We can also use Eq. (2.24) to determine the p-Ps annihilation rate in Ar. Since

Γs0 = 8 ns−1 is much larger than Γt0, the modified κ in Ar will significantly change the

total annihilation rate for the singlet state in a way it did not for the triplet state. We

obtain

Γs =κΓs0 + Γp.o.

=1.25× 8 ns−1 + 1.42 ns−1

=11.02 ns−1, (4.4)

which corresponds to a lifetime of 86± 1 ps. Performing the same analysis in Ar with

44

4.2 Ps in Ar with and without a Monovacancy

a monovacancy, we obtain 88± 1 ps.

We can compare our results of 510 ps for positron annihilation and 700–760 ps

for o-Ps annihilation to the experimental measurements of Jean, Yu, and Zhou. They

report three different signals: τ1 = 125 ps, τ2 ≈ 340–390 ps, and τ3 ≈ 2.1–2.5 ns [26].

They assumed that the p-Ps lifetime would not change significantly in Ar, so τ1 was

fixed by them at 125 ps while they fit their data to find τ2 and τ3. Our results suggest,

however, that p-Ps does have a shorter lifetime in Ar, so it would be interesting to

look for a shorter lifetime in their data. The second lifetime, τ2, is lower than either

of the lifetime ranges we found; they claim that it is due entirely to the annihilation

of single positrons. The third is higher than could be expected to exist in defect-free

Ar (as well as higher than our own calculations), so they claim that it is due to o-Ps

self-trapping in voids. This explanation has been rejected, however, both by Gullikson

and Mills [27] and by ourselves, and no one has offered a better interpretation for these

long lifetimes.

Although Jean, Yu, and Zhou claim that o-Ps does not exist in a regular Ar lattice,

we have found that there is sufficient space for o-Ps to sit inside solid Ar. It is possible

that their τ2 lifetime is actually due to a mixture of positrons and o-Ps. Still, our life-

time measurements of around 700 ps exceed this value. We may find that our potential

models need to be adjusted, or that we must perform a more self-consistent calculation

by allowing the electric charge or Ar nuclei to slightly adjust their positions around Ps.

Also, since the insulator model we are using for γ results in longer lifetimes than any

other model (except the IPM), any adjustments to our model for γ would reduce our

lifetime measurements, perhaps resulting in better agreement with experiment. Devel-

oping a better model for γ in an insulator, as well as performing simulations in other

materials, will help resolve these issues in future work.

While our lifetime calculations are somewhat different from those found in exper-

iments, it is noteworthy that we find that the pick-off annihilation rate for a single

positron (1.95 ns−1) is higher than for Ps (1.42 ns−1) in solid Ar. Thus, o-Ps has a

longer lifetime than a bare positron in a material. It is reasonable to expect that a

positron in a bound state with an electron will avoid the other electrons in the solid

more than a bare positron, which only feels an attractive force toward electrons. This

45

4.2 Ps in Ar with and without a Monovacancy

result also supports the assertions of experimentalists, who always tend to attribute

the longest lifetime in their positron lifetime spectra to o-Ps decay.

46

5 Conclusions and Future Directions

5 Conclusions and Future Directions

We have demonstrated that a path integral Monte Carlo simulation can effectively

model Ps in an insulating solid. The Pollock propagator for simulating the Coulomb

potential is efficient and accurately reproduces the theoretical results for ground state

free Ps. Using data generated by code based on density functional theory, we have

modeled the external potential caused by solid Ar and found that the Ps wavefunction

is squeezed inside this solid, with an internal contact density of κAr = 1.25±0.02. This

means that the hyperfine splitting energy of Ps in Ar is 1.25 times greater than that of

free Ps. We have also demonstrated that when the Ar lattice has a monovacancy (which

we accomplished by creating a missing atom in the middle of each cube of eight unit

cells), the Ps does not fall into the vacancy. Rather, due to the polarization potential,

Ps remains near the Ar atoms.

The lifetime of o-Ps in Ar with a monovacancy was calculated to be 760 ± 30 ps,

a slight increase from the calculation of 700 ± 15 ps for solid Ar. In support of the

experimental work of Rice-Evans et al. [25], we found that there is sufficient room

for o-Ps to exist in fcc Ar, contradicting the claim of Jean, Yu, and Zhou [26] and

suggesting that the shorter observed lifetimes may encompass a mixturee of o-Ps and

single positron decay. We also find the lifetime of a single positron in solid Ar to be

510±5 ps, supporting the prediction that a single positron is more likely to be picked off

by an electron from the crystal than a bound positron is. Contrary to the assumption

that the p-Ps lifetime remains constant at 125 ps in Ar [26], we find that it is decreased

to under 90 ps.

Future investigations will involve improving our estimation of the kinetic energy

and simulating Ps inside other many other materials, including silica, sodalite, and

other zeolites. Determining the potential felt by the electron is difficult, but we have

already been able to model a single positron inside α-SiO2. Once we have accurately

simulated the external potential felt by an electron in this material, we will be able to

measure the hyperfine splitting of Ps to compare with experimental results [30].

47

A Radial Schrödinger Equation for Coulombic Potential

A Radial Schrödinger Equation for Coulombic Potential

In Eq. (2.5), separation of variables for the Schrödinger equation leads to the radial

equation

1
r2

d

dr

(
r2dR

dr

)
=
[
`(`+ 1)
r2

− m

~
2

(
e2

r
+ E

)]
R. (A.1)

This equation is more easily solved by defining a function U(r) = rR(r), in which case

it becomes [
d2

dr2
+
m

~
2

(
e2

r
+ E

)
− `(`+ 1)

r2

]
U(r) = 0. (A.2)

Replacing r with the dimensionless variable ρ,

ρ =
2
√
me|E|
~

r, (A.3)

and defining

λ =
e2

2~

√
m

|E|
, (A.4)

Eq. (A.2) becomes [
d2

dρ2
+
λ

ρ
− 1

4
− `(`+ 1)

ρ2

]
U(ρ) = 0, (A.5)

where we are interested in bound state energies E = −|E|.

As ρ→∞, this becomes [
d2

dρ2
− 1

4

]
U(ρ) = 0, (A.6)

which has the general solution Ae−ρ/2 +Beρ/2. Because the equation must be normal-

izable, B must be zero. This suggests a solution of the form U(ρ) = e−ρ/2F (ρ), for

48

A Radial Schrödinger Equation for Coulombic Potential

which Eq. (A.5) becomes[
d2

dρ2
− d

dρ
+
λ

ρ
− `(`+ 1)

ρ2

]
F (ρ) = 0. (A.7)

Substituting in the Frobenius series F (ρ) = ρs
∑∞

k=0 ckρ
k gives

∞∑
k=0

ckρ
k+s−2 [(k + s)(k + s− 1)− `(`+ 1)] +

∞∑
k=0

ckρ
k+s−1 [λ− k − s] . (A.8)

The coefficient of each power of ρ must separately equal zero, and the coefficient of the

lowest power of ρ is s(s− 1)− `(`+ 1), which is zero for s = `+ 1 or s = −`. Since R

must be finite at the origin, the latter solution is rejected, and s is replaced by ` + 1.

Forcing the other coefficients to be zero leads to the recursion relation

ck+1

ck
=

k + `+ 1− λ
(k + 1)(k + 2`+ 2)

. (A.9)

If the series does not terminate, ck+1/ck goes to 1/k for large k, so U(ρ) goes to

ρ`+1+ρeρe−ρ/2 for large ρ, which is not normalizable. Thus, to satisfy the boundary

conditions, the series must terminate: λ must equal k + ` + 1 for some k. This is the

origin of the principle quantum number,

n = λ = 1, 2, 3, 4, (A.10)

Then `, the azimuthal quantum number, is constrained to be between 0 and n−1. The

energy levels, as defined in Eq. (A.4) are thus quantized:

|En| =
mee

4

4~2n2
. (A.11)

We can now write ρ as

ρ = r

(
4me |E|
~

2

)1/2

=
rmee

2

~
2n

=
r

a0n
, (A.12)

in terms of the Bohr radius, a0 = ~
2/mee

2.

49

A Radial Schrödinger Equation for Coulombic Potential

To find the radial wave functions, substitute F (ρ) = ρ`+1G(ρ) into Eq. (A.7) to

obtain [
ρ
d2

dρ2
+ (2`+ 2− ρ)

d

dρ
+ (n− `− 1)

]
G(ρ) = 0. (A.13)

This is Laguerre’s associated differential equation, and its solutions are the associated

Laguerre polynomials, L2`+1
n+` (ρ) [46]. The full radial wave functions for positronium are

thus

Rn`(ρ) = Nn`e
−ρ/2ρ`L2`+1

n+` (ρ), (A.14)

where Nn` is a normalization factor given by [46]

(
1
Nn`

)1/2

=
∫ ∞

0
e−ρρ2`

[
L2`+1
n+` (ρ)

]2
ρ2dρ =

2n [(n+ `)!]3

(n− `− 1)!
. (A.15)

50

B Partition Function for Classical Ring Polymer

B Partition Function for Classical Ring Polymer

Consider the situation in Figure 21 where we have P beads, connected in a ring by

springs of constant k. Suppose that these beads are constrained to move in one dimen-

sion (along a circle, for instance) and that each bead additionally feels a potential V (x)
P .

The energy of this ensemble consists of the kinetic energy of the beads, the potential

Figure 21: Model of a classical ring polymer of P beads coupled by har-
monic springs of constant k, where each bead feels a potential V (x)

P .

energy stored in the springs, and the energy due to the external potential V . We can

thus write down the energy as

E =
[
p2

1

2m
+ · · ·+

p2
P

2m

]
+
[
k

2
(x1 − x2)2 + · · ·+ k

2
(xP − x1)2

]
+
[
V (x1)
P

+ · · ·+ V (xP)
P

]
=

[
P∑
i=1

p2
i

2m

]
+

[
k

2

P∑
i=1

(xi − xi+1)2 +
1
P

P∑
i=1

V (xi)

]
, (B.1)

where we define xP+1 ≡ x1. The semiclassical partition function (using Planck’s con-

stant h as the dimension of a cube of classical phase space), can be written as

Z =
∫
· · ·
∫

exp(−βE)
dp1 · · · dpPdx1 · · · dxP

hP
, (B.2)

where β = 1
kT is the inverse temperature. Since the exponential of a sum is the product

of exponentials, we can pull out the kinetic energy terms as a product of P idential

51

B Partition Function for Classical Ring Polymer

integrals, each equal to

∫ ∞
−∞

exp
(
−βp

2

2m

)
dp =

(
2πm
β

) 1
2

=
(

m

2πβ~

) 1
2

. (B.3)

The partition function in Eq. (B.2) thus becomes

Z =
(

m

2πβ~2

)P
2
∫
dx1 · · · dxP exp

[
−β

(
k

2

P∑
i=1

(xi − xi+1)2 +
1
P

P∑
i=1

V (xi)

)]
. (B.4)

Aside from a difference in prefactor, this is equivalent to the partition function for a

single particle under the potential V (x), seen in Eq. (3.4), if we set k = mP
β2~2 . It is this

map from a quantum system to a classical system that is at the heart of PIMC.

52

C The Basics of Density Functional Theory (DFT)

C The Basics of Density Functional Theory (DFT)

If we are considering a system of N electrons, this means that we are reducing an

expression of 3N variables to an expression of only three variables, which is a significant

simplification. The justification for this will be discussed, but first let us consider how

to write the energy functional.

The energy of a system can be broken into three parts: the kinetic energy, the

electrostatic interactions of the electrons and nuclei, and the external potential energy,

E[ρ(r)] = T [ρ(r)] + Ees[ρ(r)] + Eext[ρ(r)], (C.5)

where the external potential is of the form Eext =
∫
V̂ext(r)ρ(r)d3r and the electrostatic

term includes the Coulombic electron-electron and electron-nuclei interactions. Earlier

density functional theories developed by Thomas and Fermi in the 1920s had failed

due to their approximation of the kinetic energy based on a homogeneous electron gas

known as jellium. Kohn and Sham succeeded because of the introduction of Kohn-

Sham orbitals, which are the orthonormal single-electron wavefunctions that would be

exact if the electrons did not interact. The electron density can be expressed as a linear

combination of them,

ρ(r) =
N∑
n=1

an|φ(r)|2, (C.6)

and an approximation to the kinetic energy is then [48]

Ts[ρ(r)] = − ~
2

2m

N∑
n=1

anφ
∗
n(r)∇2φn(r)d3r. (C.7)

Similarly, we cannot write down the exact electronic part of Ees[ρ(r)], but we can use

the approximation

Ee−e[ρ(r)] ≈ J [ρ(r)] ≡ 1
2

∫
ρ(r)ρ(r′)
|r − r′|

d3rd3r′. (C.8)

This is the direct Coulomb interaction, neglecting the Pauli exclusion principle which

53

C The Basics of Density Functional Theory (DFT)

states that two electrons cannot occupy the same position [47]. The above approxima-

tions are grouped in a new term, the so-called exchange correlation energy:

Exc[ρ(r)] = (T [ρ(r)]− Ts[ρ(r)]) + (Ee−e[ρ(r)]− J [ρ(r)]) . (C.9)

The exchange correlation energy is calculated using the local density approximation

(LDA), for which we assume that the response of an electron at a given point can be

approximated by the response in a jellium of the same electron density [48]. With these

changes, Eq. (C.5) becomes

E[ρ(r)] = Ts[ρ(r)] + Ee−n[ρ(r)] + J [ρ(r)] + Exc[ρ(r)] + Eext[ρ(r)]. (C.10)

Writing the energy as a functional of the electronic density is justified by one of

the Hohenberg-Kohn theorems, which states that given an external potential V̂ext(r),

the ground state electron density ρ(r) is a unique function of Ĥ0 + V̂ext [47]. To prove

this, suppose not, so that two potentials, V̂ext and V̂ ′ext both give the same ground state

electronic density. Since they are different potentials, they have different ground states

and ground-state energies, given by

(
Ĥ0 + V̂ext

)
|ψ〉 =E |ψ〉(

Ĥ0 + V̂ ′ext

) ∣∣ψ′〉 =E′
∣∣ψ′〉 . (C.11)

Since |ψ′〉 is the ground state of Ĥ0 + V̂ ′ext, E
′ =

〈
ψ′
∣∣∣Ĥ0 + V̂ ′ext

∣∣∣ψ′〉 is strictly less than

the energy of any other state under this Hamiltonian. Specifically, E′ is less than

〈
ψ
∣∣∣Ĥ0 + V̂ ′ext

∣∣∣ψ〉 =
〈
ψ
∣∣∣Ĥ0 + V̂ext − V̂ext + V̂ ′ext

∣∣∣ψ〉
=E +

〈
ψ
∣∣∣V̂ ′ext − V̂ext

∣∣∣ψ〉
=E +

∫
ρ(r)

[
V̂ ′ext − V̂ext

]
d3r, (C.12)

54

C The Basics of Density Functional Theory (DFT)

so we have

E′ < E +
∫
ρ(r)

[
V̂ ′ext − V̂ext

]
d3r. (C.13)

Performing the same operations for the unprimed Hamiltonian and ground state energy,

we see that

E < E′ +
∫
ρ(r)

[
V̂ext − V̂ ′ext

]
d3r. (C.14)

Adding Equations (C.13) and (C.14) gives

E + E′ < E + E′ +
∫
ρ(r)

[
V̂ ′ext − V̂ext

]
d3r +

∫
ρ(r)

[
V̂ext − V̂ ′ext

]
d3r. (C.15)

But since the electron density is the same, the last two terms on the right cancel, giving

E + E′ < E + E′, a contradiction. We thus see that the ground state electron density

is uniquely determined by the external potential, and thus the external potential can

be determined from a given ground state electron density.

By minimizing the energy in Eq. (C.10) subject to the constraint that
∫
ρ(r)d3r =

N for a system of N electrons, one can obtain the Kohn-Shan effective Shrödinger

equation, [
−∇

2

2m
+ Veff(r)

]
φn(r) = εnφn(r). (C.16)

This effective potential is given by

Veff(r) = −
∑
a

Za
|r − r′|

+
∫

ρ(r′)
|r − r′|

d3r′ + µxc[ρ(r)] + Vext(r) (C.17)

where µxc[ρ(r)] = δExc[ρ]/δρ is a functional derivative.

This is the basis of finding the electronic density, ρ[r]. An extension of this to a

system that also has positron density will yield Veff for a positron, as shown by Sterne

and Kaiser [49], but this calculation is beyond the scope of this thesis.

55

D Measuring κ with Magnetic Quenching

D Measuring κ with Magnetic Quenching

Although the internal contact density of Ps has not been measured in Ar, it has been

experimentally determined in other materials through a technique known as magnetic

quenching. For this reason, κ can also be referred to as the “quenching rate constant.”

When Ps is placed in a uniform magnetic field of magnitude B, the perturbing

Hamiltonian is given by

Ĥ1 = −
(
µ+ + µ−

)
·B. (D.1)

The |↑〉 and |↓〉 spin states for the electron and the positron are eigenvectors of these

operators:

µ+ |↑〉+ =µ |↑〉+ , (D.2)

µ+ |↓〉+ =− µ |↓〉+ , (D.3)

µ− |↑〉− =− µ |↑〉− , (D.4)

µ− |↓〉− =µ |↓〉− , (D.5)

where µ is the scalar magnetic moment of the electron. Each state of Ps can be written

as a direct product of these eigenstates:

|0, 0〉 =
1√
2

(
|↑〉+ |↓〉− − |↓〉+ |↑〉−

)
, (D.6)

|1, 0〉 =
1√
2

(
|↑〉+ |↓〉− + |↓〉+ |↑〉−

)
, (D.7)

|1, 1〉 = |↑〉+ |↑〉− , (D.8)

|1,−1〉 = |↓〉+ |↓〉− . (D.9)

The |1, 1〉 and |1,−1〉 states are already eigenstates of Ĥ1, so we need only consider

56

D Measuring κ with Magnetic Quenching

the 2× 2 array for the |0, 0〉 p-Ps and |1, 0〉 o-Ps states, 〈0, 0
∣∣∣Ĥ1

∣∣∣ 0, 0〉 〈
0, 0

∣∣∣Ĥ1

∣∣∣ 1, 0〉〈
1, 0

∣∣∣Ĥ1

∣∣∣ 0, 0〉 〈
1, 0

∣∣∣Ĥ1

∣∣∣ 1, 0〉
 =

 0 −2µB

−2µB 0

 . (D.10)

If we write the hyperfine splitting between the o-Ps and p-Ps states in vacuum as ~ω0,

then we need to add the factor ∆Eo−p = ~ω, where ~ω = κ~ω0. This factor makes the

matrix for Ĥ in the spin basis become

Ĥ =

 0 −2µB

−2µB ~ω

 = −2µB

 0 1

1 − 2
x

 , (D.11)

where x ≡ 4µB/~ω. Diagonalizing the matrix in Eq. (D.11) gives the eigenvalues

−[1±
√

1 + x2]/x, resulting in the eigenstates

|+〉 =
1√

1 + y2
|1, 0〉 − y√

1 + y2
|0, 0〉 , (D.12)

|−〉 =
y√

1 + y2
|1, 0〉 +

1√
1 + y2

|0, 0〉 , (D.13)

where y = x/[1 +
√

1 + x2].

Using Eq. (D.13), we can write the self-annihilation rate of the |−〉 state, Γ−, in

terms of Γt and Γs, the self-annihilation rates of o-Ps and p-Ps without a magnetic

field:

Γ− =
y2

1 + y2
Γt +

1
1 + y2

Γs. (D.14)

Using Eq. (2.24), which gives the modified annihilation rates for Ps in a solid in terms

of κ, we can write:

Γ− − Γs =
y2

1 + y2
(Γt − Γs) =

κy2

1 + y2
(Γt0 − Γs0). (D.15)

When B = 0, x and y are also both zero, so Γs = Γ−(B = 0). Using the accepted

57

D Measuring κ with Magnetic Quenching

values of 0.007 ns−1 and 2 ns−1 for Γt0 and Γs0, respectively, we obtain

Γ−(B)− Γ−(B = 0) = −(1.993ns−1)κy2

1 + y2
. (D.16)

Since y is just a function of x, and x = 4µB/κ~ω0 = B/(κ×36 kGauss), the annihilation

rate of the |−〉 state is simply a function of the magnetic field strength B (which can

easily be controlled) and the internal contact density κ [50].

Γ− can be measured by fitting the spectra for varying B to find the different annihi-

lation rates and looking for one that shifts in the magnetic field. The self-annihilation

rate Γ− will not be hidden by pick-off effects because the |−〉 state is a correction to

the p-Ps |0, 0〉 state, whose self-annihilation rate dominates any pick-off annihilation.

By measuring annihilation rates as a function of magnetic field strength, a num-

ber of experimentalists have measured κ inside various solids. For example, Nagai,

Nagashima, and Hyodo have determined that κ = 0.31 ± 0.02 in α-SiO2 [30]. This

magnetic quenching method could be used to measure κ in Ar to compare with our

result of κ = 1.25± 0.02.

58

E PIMC Program Code

E PIMC Program Code

1 PROGRAM PIMC ! Path Integral Monte Carlo
2
3 ! ***** The HISTORY of this program: *****
4 !
5 ! This code originated from sphere4.2.f90 (Summer 1999), which was a
6 ! staging program for a single particle using the image potential due
7 ! to a hard sphere. It evolved to sphere_esV5.f90 (March 2000), which
8 ! was modified to use the pseudopotential from the electronic structure
9 ! calculation and to read discrete potentials with periodic boundary

10 ! conditions. A cubic spline interpolation routine due to J.E. Pask was
11 ! added to interpolate between potential values.
12 !
13 ! periodic1.f90 was tailored for periodic potentials and used routines
14 ! collected by Philip Sterne (sterne1@llnl.gov) in a wrapper vcg.f90,
15 ! which calculated positron potentials by interpolation from the output
16 ! file of another program called fepot. This became a two-chain model
17 ! in periodic2.f90, in which the chains interacted via a Yukawa
18 ! potential.
19 !
20 ! In Mac_PEZ.f90, the chains could also interact via the Coulombic
21 ! thermal density propagator and the bead correlation function was
22 ! calculated. This code could also run on a Mac as well as Oxford.
23 ! Mac_PPEZnew.f90 is a parallel version of the code designed to run on
24 ! the Appleseed cluster. The pair correlation function, g(r), was also
25 ! added.
26
27 ! ***** Separate Modules *****
28
29 use vcGrid ! deals with vcg files: potential V and charge density
30 ! C on a grid G (Phil Sterne)
31 ! 300 lines
32 use types ! sets double precision type (J. E. Pask, January 1997)
33 ! 13 lines
34 use epot ! produces pseudopotential for electron in lattice
35 ! (Amy Bug, April 2000)
36 ! 308 lines
37 use cluster_elec ! generates cluster of atoms that contribute to
38 ! electron pseudopotential (Amy Bug, April 2000,
39 ! adopted from subroutine clust by Phil Sterne)
40 ! 524 lines
41 use cluster_gofr ! generates cluster of atoms that contribute to
42 ! g(r) function (Lisa Larrimore, July 2001, adopted
43 ! from cluster_elec by Amy Bug)
44 ! 225 lines
45 use Table ! calculates look-up table for the Ps thermal density

59

E PIMC Program Code

46 ! matrix (Roy Pollock)
47 ! 662 lines
48
49 ! ***** Variable Declarations *****
50
51 implicit none
52
53 ! MPI variables used for parallelization
54 include ’mpif.h’
55 integer :: rank, size, tag, count, steps, ierr
56 integer :: status(MPI_STATUS_SIZE)
57 real (dp), allocatable :: R_Corr_Temp(:), radbin_temp(:)
58 real (dp), allocatable :: tempbin(:,:,:), grbeadbin_temp(:)
59 real (dp), allocatable :: grcmbin_temp(:)
60
61 integer, parameter :: nbinmax=10000 ! limiting number of radial bins
62 integer, parameter :: limlow=-20,limhi=20 ! limits of potl array points
63 integer, parameter :: nx=41,ny=41,nz=41 ! should agree w/ limits above
64 real, parameter :: delta = .502 ! spacing between grid points;
65 ! this*limlow = u.c. diam
66 real, parameter :: pi = 3.14159
67
68 integer :: nbins ! number of bins for radial binning
69 real :: rbinmax ! limiting radius for binning
70
71 integer :: i,j,k,s,ib,id,ic,irun,ibin ! counters
72 integer :: nequil ! after nequil MC passes, begin data taking
73 integer :: nevalu = 10 ! update acceptance rate every nevalu MC passes
74 integer :: ninit ! initialize from old position or not?
75 integer :: nb, mb, npass, jump ! see read(11,*)’s for explanation
76 integer :: npts(3) ! replaces nx, ny, nz
77 integer :: CorrelationCounts ! number of corr calcs to do per cycle
78 integer :: deg ! degree of spline
79
80 logical :: UsePollock ! use Pollock? (else, use Yukawa)
81 logical :: UseExternal ! use external potentials? (else, free Ps)
82 logical, allocatable :: x_changed(:,:) ! Flag for beads that are moved
83
84 real, dimension(:,:,:), allocatable :: x,xn ! position of Ps beads
85 real, allocatable :: xEnergyOld(:,:) ! potl E of each pair of beads
86 real, allocatable :: xEnergyNew(:,:) ! potl E of each new pair
87 real (dp), allocatable :: xOverlap(:) ! overlap coefficients
88 real (dp), allocatable :: R_Correlation(:) ! correlation between beads
89 real (dp) :: R_Dist ! distance between a pair of beads
90 real :: DP_New, DP_Old = 0.0 ! density potentials
91 real :: xc1(3), xc2(3), xc(3) ! centroids (e-, e+, Ps)
92 double precision :: xper, yper, zper
93 real :: elecbin(limlow:limhi, limlow:limhi, limlow:limhi)

60

E PIMC Program Code

94 ! cartesian bins for electron
95 real :: posibin(limlow:limhi, limlow:limhi, limlow:limhi)
96 ! cartesian bins for positron
97 real (dp) :: radbin(nbinmax) ! radial bins for relative coordinate
98
99 ! Energy variables:

100 real (dp) :: energy_ave ! kin energy
101 real (dp) :: energyV_ave ! pot’l energy
102 real (dp) :: energy2_ave ! ave kin energy squared
103 real (dp) :: energyV2_ave ! ave pot’l energy squared
104 integer :: energy_count ! counter for averaging
105
106 ! g(r) variables:
107 real (dp) :: gr_bead_bin(nbinmax) ! array for binning bead-atom g(r)
108 real (dp) :: gr_cm_bin(nbinmax) ! array for binning cm-atom g(r)
109 real (dp) :: gr_pt(3) ! point from which g(r) is measured
110 real (dp) :: gr_dist ! distance over which g(r) is measured
111 real (dp) :: gr_rmax
112 ! gr_dist + rcell (radius of sphere enclosing unit cell)
113 real (dp), pointer :: gr_clus(:,:)
114 ! indices of atoms within gr_dist of unit cell boundary
115 integer :: gr_nclus ! number of atoms in gr_nclus
116 integer :: gr_bead_count ! # of times bead-atom distances are binned
117 integer :: gr_cm_count ! number of times cm-atom distances are binned
118 real (dp) :: tmat(3,3) ! transformation from real to lattice vector
119 real (dp) :: temp1, temp2
120
121 real :: amass, beta, hbar, rcav, aep ! see read(11,*)’s below
122 real :: wave ! deB wavelength of free particle
123 real (dp) :: c_overlap ! charge overlap integral with gamma correction
124 real (dp) :: c_overlap_zero ! charge overlap integral alone
125 integer :: c_overlap_count ! counts times c_overlap is calculated
126 real :: ac, acsum ! acceptance rate and its average for bead moves
127 real :: accm, accmsum ! acceptance rate and its average for cm moves
128 real :: sigelec, sigposi, sigelec_self, sigposi_self ! width of path
129 real :: rrel ! relative coordinate distance
130 real :: rforbin(nbinmax) ! relative coord distance as bin radius
131
132 integer, parameter :: fileNameLength=70 ! length of string for filename
133 integer :: iui ! logical unit number for input
134 integer :: iuo ! logical unit number for output
135
136 real (dp) :: rv_(3,3) ! lattice vectors in atomic units
137 ! rv_(i,j) is jth component of ith vector
138 real (dp) :: gv_(3,3) ! inverse lattice vectors
139 real (dp) :: rv(3,3) ! transpose of lattice vectors
140 ! rv(i,j) is ith comp of jth vector
141 real (dp) :: gv(3,3) ! transpose of inverse lattice vectors

61

E PIMC Program Code

142 real (dp) :: tolcs ! tolerance for cluster size
143 logical :: lprint_e ! verbose print electron cluster info?
144 real (dp) :: dummyvec(3,3) ! dummy; same as lattice vectors
145 integer :: dummynpts(3) ! dummy; same as number of lattice pts
146 real (dp) :: rpoint (3) ! point in cartesian coordinates
147 real (dp) :: pot ! potential
148 real (dp) :: cdt ! total charge density
149 type(vcgData) :: potVcg ! potential on spline grid
150 type(vcgData) :: cdVcg ! total charge density on spline grid
151 type(vcgData) :: gamVcg ! contact corr function on spline grid
152 logical :: periodic(3) ! t = lattice vector direc is periodic
153 character(fileNameLength) :: vcgFile ! filename for vcg file
154 character(fileNameLength) :: eptFile ! filename for epot input
155 real (dp) :: gam ! enhancement factor
156 integer :: error ! error flag
157
158 real :: starttime, endtime ! time variables
159 character(fileNameLength) :: TempFort ! for renaming Fortran files
160
161 ! ***** Executable *****
162
163 starttime = MPI_WTIME() ! Using a function from the Message
164 ! Passing Interface (MPI) library, we
165 ! can time our calculation.
166 call ReadInput() ! Get input parameters.
167 call Initialize() ! Initialize variables.
168
169 ! Loop through the PIMC routine for a total of ’npass’ times.
170 MC_passes: do irun = 0, npass-1
171
172 ! Do a Monte Carlo move.
173 call move(ac)
174
175 ! Update the centers of mass.
176 do i=1,3
177 xc1(i) = sum(x(:,1,i))/float(nb)
178 xc2(i) = sum(x(:,2,i))/float(nb)
179 end do
180 xc = (xc1+xc2)/2.0
181
182 ! Print what percent of the calculation has been completed,
183 ! using the magic of integer arithmetic.
184 if (irun*100/npass > (irun-1)*100/npass) write(*,*) &
185 (irun*100/npass), "percent done"
186
187 ! Now we update the acceptance rate by adding ’ac’ to ’acsum’.
188 ! ac was set to 1 by move(ac) if a successful move was made.
189 acsum = acsum + ac

62

E PIMC Program Code

190
191 ! Every nevalu-th move, we look at acsum, and see how many moves are
192 ! being accepted. If the rate is too low or two high, we adjust the
193 ! number of beads moved in each step.
194 if (mod(irun,nevalu) == nevalu-1) then
195 ac = acsum/(nevalu-1) ! Determine fraction of accepted moves.
196 ! (single bead moves only occur nevalu-1 times)
197 write(6,100) irun,ac,mb ! a simple diagnostic
198 100 format ("",I8," ",F6.2," ",I4)
199 ! adjust mb so the acceptance rate is roughly 50%
200 if(ac > 0.5) mb=mb+1
201 if(ac < 0.5) mb=mb-1
202 if(mb < 1) mb=1
203 if(mb > nb) mb=nb
204 acsum = 0
205 end if
206
207 ! Every jump-th move, we make calculations regarding the centroids of
208 ! the beads, their dispersion, and their correlation function.
209
210 if (mod(irun,jump)==0) then ! When irun is a multiple of jump...
211
212 ! if we have completed the specified number of equilibration
213 ! steps, then...
214 if (irun.gt.nequil) then
215
216 ! ...we bin the cartesian coordinates of the beads...
217 call makexyzbin(elecbin,posibin)
218
219 ! ...and the relative, radial, seperation of the electron and
220 ! positron beads...
221 CALL RadialBin()
222
223 ! ...and calculate the overlap integral...
224 CALL ChargeOverlap()
225 c_overlap_count = c_overlap_count + 1
226 write(30,*) c_overlap/float(c_overlap_count)/float(nb), &
227 c_overlap_zero/float(c_overlap_count)/float(nb)
228
229 ! ...and calculate the pair correlation function.
230 CALL GofR_Bin()
231
232 end if
233
234 ! Sometimes, we find the bead that is farthest from the
235 ! center of mass, in the x-direction:
236 ! i=1
237 ! do j=2,nb

63

E PIMC Program Code

238 ! rrel=abs(x(i,2,1)-xc2(1))
239 ! if (abs(x(j,2,1)-xc2(1)).gt.rrel) i=j
240 ! enddo
241 ! if (i.eq.nb) rrel=abs(x(i,2,1)-xc2(1))
242 ! write(39,*) rrel
243
244 ! Write the position of the electron and positron centroids:
245 write(31,"(6f12.5)") xc1, xc2
246
247 ! Calculate electron and positron bead dispersions:
248 sigelec = 0.0
249 sigposi = 0.0
250 sigelec_self=0.0
251 sigposi_self=0.0
252 do ib = 1,nb
253 sigelec = sigelec + (x(ib,1,1)-xc(1))**2 + (x(ib,1,2)-xc(2))**2 &
254 + (x(ib,1,3) - xc(3))**2
255 sigposi = sigposi + (x(ib,2,1)-xc(1))**2 + (x(ib,2,2)-xc(2))**2 &
256 + (x(ib,2,3) - xc(3))**2
257 sigelec_self = sigelec_self + (x(ib,1,1)-xc1(1))**2 &
258 + (x(ib,1,2)-xc1(2))**2 + (x(ib,1,3) - xc1(3))**2
259 sigposi_self = sigposi_self + (x(ib,2,1)-xc2(1))**2 &
260 + (x(ib,2,2)-xc2(2))**2 + (x(ib,2,3) - xc2(3))**2
261 end do
262 sigelec = (sigelec/float(nb)) ** .5
263 sigposi = (sigposi/float(nb)) ** .5
264 sigelec_self = (sigelec_self/float(nb)) ** .5
265 sigposi_self = (sigposi_self/float(nb)) ** .5
266 ! Write these values out to the ’fort.12’ file.
267 write(12,"(i6, 1x, 4f12.5)") irun, sigposi, sigelec, &
268 sigelec_self, sigposi_self
269
270 ! Calculate the bead correlation function:
271 ! CALL DoCorrelation()
272
273 end if
274
275 end do MC_passes
276
277 write(*,*) "C_Overlap:", c_overlap / float(c_overlap_count) / float(nb)
278 write(*,*) "C_Overlap_Zero:", c_overlap_zero / float(c_overlap_count) &
279 / float(nb)
280
281 ! Write the bead correlation function to fort.18
282 ! When running on the AppleSeed cluster, use these lines to
283 ! make all "slave" computers send their final results to the
284 ! "master" node.
285 allocate(R_Corr_Temp(nb))

64

E PIMC Program Code

286 if(rank == 0) then
287 do i = 1,size-1
288 call MPI_RECV(R_Corr_Temp,nb,MPI_DOUBLE_PRECISION,i,5, &
289 MPI_COMM_WORLD,status,ierr)
290 R_Correlation(:) = R_Correlation(:) + R_Corr_Temp(:)
291 enddo
292 else
293 call MPI_SEND(R_Correlation,nb,MPI_DOUBLE_PRECISION,0,5, &
294 MPI_COMM_WORLD,ierr)
295 endif
296 deallocate(R_Corr_Temp)
297
298 TempFort=’for18_correlation’
299 open(unit=18,file=TempFort,status=’replace’,action=’write’)
300 write(18,*) "Bead Correlation Function of Positronium: The square of"
301 write(18,*) "the ave dist between a bead and its Nth neighbor."
302 write(18,*) "Data taken from PPEZnew. Some constants:"
303 write(18,*) "Beta = ", beta
304 write(18,*) "# of beads =", nb
305 write(18,*) "# of runs =", npass
306 do i = 1,nb
307 write(18,*) i, R_Correlation(i)!/R_Correlation(1)
308 enddo
309
310 ! Write the radial distribution function to fort.20
311 allocate(radbin_temp(nbinmax))
312 if(rank == 0) then
313 do i = 1,size-1
314 call MPI_RECV(radbin_temp,nbinmax,MPI_DOUBLE_PRECISION,i,6, &
315 MPI_COMM_WORLD,status,ierr)
316 radbin(:) = radbin(:) + radbin_temp(:)
317 enddo
318 else
319 call MPI_SEND(radbin,nbinmax,MPI_DOUBLE_PRECISION,0,6, &
320 MPI_COMM_WORLD,ierr)
321 endif
322 deallocate(radbin_temp)
323
324 TempFort=’for20_rad_dist’
325 open(unit=20,file=TempFort,status=’replace’,action=’write’)
326 write(20,*) "Dist’n fcn of rel coord, e+ dist from (0,0,0)"
327 write(20,*) "Beta = ", beta
328 write(20,*) "# of beads =", nb
329 write(20,*) "# of runs =", npass
330 do ibin = 1, nbins
331 write(20,*) rforbin(ibin), radbin(ibin)
332 end do
333

65

E PIMC Program Code

334 ! Write the electron distribution to fort.21
335 allocate(tempbin(limlow:limhi, limlow:limhi, limlow:limhi))
336 if(rank == 0) then
337 do i = 1,size-1
338 call MPI_RECV(tempbin,(-limlow+limhi+1)**3,MPI_DOUBLE_PRECISION, &
339 i,7,MPI_COMM_WORLD,status,ierr)
340 elecbin(:,:,:) = elecbin(:,:,:) + tempbin(:,:,:)
341 enddo
342 else
343 call MPI_SEND(elecbin,(-limlow+limhi+1)**3,MPI_DOUBLE_PRECISION, &
344 0,7,MPI_COMM_WORLD,ierr)
345 endif
346 deallocate(tempbin)
347
348 TempFort=’for21_cart_elec’
349 open(unit=21,file=TempFort,status=’replace’,action=’write’)
350 write(21,*) "Cartesian Electron Distribution"
351 write(21,*) "Some constants:"
352 write(21,*) "Beta = ", beta
353 write(21,*) "# of beads =", nb
354 write(21,*) "# of runs =", npass
355 do i = limlow, limhi
356 do j = limlow, limhi
357 do k = limlow, limhi
358 write(21,*) elecbin(i,j,k)
359 end do
360 end do
361 end do
362
363 ! Write the positron distribution to fort.22
364 allocate(tempbin(limlow:limhi, limlow:limhi, limlow:limhi))
365 if(rank == 0) then
366 do i = 1,size-1
367 call MPI_RECV(tempbin,(-limlow+limhi+1)**3,MPI_DOUBLE_PRECISION, &
368 i,8,MPI_COMM_WORLD,status,ierr)
369 posibin(:,:,:) = posibin(:,:,:) + tempbin(:,:,:)
370 enddo
371 else
372 call MPI_SEND(posibin,(-limlow+limhi+1)**3,MPI_DOUBLE_PRECISION, &
373 0,8,MPI_COMM_WORLD,ierr)
374 endif
375 deallocate(tempbin)
376
377 TempFort=’for22_cart_posi’
378 open(unit=22,file=TempFort,status=’replace’,action=’write’)
379 write(22,*) "Cartesian Positron Distribution"
380 write(22,*) "Some constants:"
381 write(22,*) "Beta = ", beta

66

E PIMC Program Code

382 write(22,*) "# of beads =", nb
383 write(22,*) "# of runs =", npass
384 do i = limlow, limhi
385 do j = limlow, limhi
386 do k = limlow, limhi
387 write(22,*) posibin(i,j,k)
388 end do
389 end do
390 end do
391
392 ! Write the g(r) raw data
393 ! N(r) = gr_bin/gr_count
394 ! g(r) = N(r)/(atom density * volume of bin at r)
395 ! atom density = 4/a^3 for fcc crystal lattice
396 ! volume of bin at r = 4 * pi * r^2 * bin width
397 allocate(grcmbin_temp(nbinmax))
398 if (rank.eq.0) then
399 do i = 1,size-1
400 call MPI_RECV(grcmbin_temp,nbinmax,MPI_DOUBLE_PRECISION,i,9, &
401 MPI_COMM_WORLD,status,ierr)
402 gr_cm_bin(:) = gr_cm_bin(:) + grcmbin_temp(:)
403 enddo
404 else
405 call MPI_SEND(gr_cm_bin,nbinmax,MPI_DOUBLE_PRECISION,0,9, &
406 MPI_COMM_WORLD,ierr)
407 endif
408 deallocate(grcmbin_temp)
409
410 TempFort=’for23_cm_gofr’
411 open(unit=23,file=TempFort,status=’replace’,action=’write’)
412 write(23,*) "cm-atom pair correlation function g(r)"
413 write(23,*) "beta, nb, npass, nequil:", beta, nb, npass, nequil
414 write(23,*) "gr_dist, bin width (gr_dist/nbins):", gr_dist, &
415 gr_dist/float(nbins)
416 write(23,*) "distances binned how many times? on how many computers?",&
417 gr_cm_count, size
418 do i=1,nbins
419 temp1 = gr_dist/float(nbins)*(i-1) !r
420 temp2 = gr_cm_bin(i)/float(gr_cm_count*size) ! N(r)
421 write(23,*) temp1, temp2
422 enddo
423
424 allocate(grbeadbin_temp(nbinmax))
425 if (rank.eq.0) then
426 do i=1,size-1
427 call MPI_RECV(grbeadbin_temp,nbinmax,MPI_DOUBLE_PRECISION,i,2, &
428 MPI_COMM_WORLD,status,ierr)
429 gr_bead_bin(:) = gr_bead_bin(:) + grbeadbin_temp(:)

67

E PIMC Program Code

430 enddo
431 else
432 call MPI_SEND(gr_bead_bin,nbinmax,MPI_DOUBLE_PRECISION,0,2, &
433 MPI_COMM_WORLD,ierr)
434 endif
435 deallocate(grbeadbin_temp)
436
437 TempFort=’for24_bead_gofr’
438 open(unit=24,file=TempFort,status=’replace’,action=’write’)
439 write(24,*) "bead-atom pair correlation function g(r)"
440 write(24,*) "beta, nb, npass, nequil:", beta, nb, npass, nequil
441 write(24,*) "gr_dist, bin width (gr_dist/nbins):", gr_dist, &
442 gr_dist/float(nbins)
443 write(24,*) "distances binned how many times? on how many computers?",&
444 gr_bead_count, size
445 do i=1,nbins
446 temp1 = gr_dist/float(nbins)*(i-1) ! r
447 temp2 = gr_bead_bin(i)/float(gr_bead_count*size) ! N(r)
448 write(24,*) temp1, temp2
449 enddo
450
451 ! Write the final positions of the beads to fort.17
452 TempFort=’for17_final_bead’
453 open(unit=17,file=TempFort,status=’replace’,action=’write’)
454 do ic = 1, 2
455 do ib = 1, nb
456 write(17,*) x(ib,ic,:)
457 end do
458 end do
459 print*, "these data came from Mac_PPEZnew.f90"
460
461 endtime = MPI_WTIME()
462 print*, "Total time (in seconds):", endtime-starttime
463 print*, " (in hours):", (endtime-starttime)/3600.0
464
465 call MPI_FINALIZE(ierr)
466
467 contains
468
469 !__________INIT_BEADS SUBROUTINE _________________!
470
471 subroutine init_beads(ni)
472 implicit none
473 integer :: is = 1 ! (rightnow, a dummy) variable for gaussian RNG
474 integer :: id ! counter for dimension
475 integer :: ierror
476 integer :: ibeadcount ! number of beads in reading file
477 integer :: ni ! type of initialization: 0 de novo or 1 from file

68

E PIMC Program Code

478 integer :: ic ! charge (electron = 1 or positron = 2)
479 real :: xsum,xshift
480 double precision :: gg
481
482 ! If starting from scratch (ni flag is 0 in PEZ.in), place the
483 ! beads in a Gaussian distribution about the origin.
484 if(ni == 0) then
485 gg = min(wave*wave,rcav*rcav/12.0)
486 ! start gg smaller if you wish
487 ! gg = 0.1
488 dim: do id = 1,3
489 xsum = 0.0
490 charge1: do ic = 1,2
491 bead1: do ib = 1, nb
492 x(ib,ic, id) = gauss(gg,is)
493 xsum=xsum+x(ib,ic,id)
494 end do bead1
495 x(nb+1,ic,id) = x(1,ic,id)
496 end do charge1
497 xsum = xsum/2.0/float(nb)
498 xshift = xc(id)-xsum
499 charge2: do ic = 1,2
500 bead2: do ib = 1,nb+1
501 x(ib,ic,id)=x(ib,ic,id)+xshift
502 end do bead2
503 end do charge2
504 end do dim
505 end if
506
507 ! If the ni flag is set to 1, read the initial positions from the
508 ! file for17_final_bead.
509 if (ni == 1) then
510 ibeadcount = 0
511 open (unit = 16, file = ’for17_final_bead’, status = ’old’, &
512 action = ’read’, iostat = ierror)
513 if (ierror /= 0) then
514 write(*,*) ’An error occured opening for17_final_bead’
515 write(*,*) ’Consider changing ninit in the PEZ.in file to 0.’
516 STOP
517 end if
518 charge3: do ic = 1, 2
519 bead3: do ib = 1, nb
520 read(16,*,iostat = ierror) x(ib,ic,1), x(ib,ic,2), x(ib,ic,3)
521 ibeadcount = ibeadcount+1
522 if (ierror /= 0) STOP
523 end do bead3
524 end do charge3
525

69

E PIMC Program Code

526 !Close off the chain
527 x(nb+1,:,:) = x(1,:,:)
528
529 if(ibeadcount /= 2*nb) then
530 write(*,*) ’too few or too many beads in for17_final_bead file’
531 STOP
532 end if
533 end if
534
535 if (ni > 1) then
536 write(*,*) ’erroneous flag for reading beads’
537 STOP
538 end if
539
540 ! Initially, the "new" positions in xn are the same as the old.
541 xn = x
542
543 end subroutine init_beads
544
545 !_______MC MOVE SUBROUTINE_______!
546
547 subroutine move(ac)
548 use vcGrid
549 use types
550 implicit none
551 !real, DIMENSION(:,:,:), POINTER :: xtemp
552 real, intent(out) :: ac
553 real :: vsum, vsumnew, vchange, de, det, gsum, gsumnew,gchange,gtest
554 real :: vee, energy, yuk_e_poo
555 real :: effBeta ! beta / number of beads
556 real (dp) :: pot1 ! electron pseudopotl
557 real (dp) :: relec(3) ! electron coordinates
558 real :: dis1(3), dis2(3), dis12(3)
559 real :: rdis1, rdis2, rdis12 !sep’s for electron-positron interaction
560 real :: qep(2) ! charges on electron and positron
561 qep(1) = -1.0; qep(2) = 1.0
562
563 effBeta = beta / float(nb)
564 ac = 0.00 !set acceptance rate for this step equal to zero
565
566 ! Do a staging move on the beads (re-pick from a gaussian distribution).
567 ! Do electron and positron moves serially. Every 10 passes, try a
568 ! center of mass move instead.
569 if (mod(irun,10).eq.0) then
570 call move_cm(xn)
571 else
572 call tryboth(xn)
573 end if

70

E PIMC Program Code

574
575 ! DP_* are variables for the thermal density propagator ’potential’.
576 DP_Old = 0.0
577 DP_New = 0.0
578
579 do i = 1,nb
580 if (x_changed(i,1) .OR. x_changed(i,2)) then
581 ! If a bead has been moved, recalculate its energies...
582 dis1 = x(i,1,:) - x(i,2,:)
583 dis2 = x(i+1,1,:) - x(i+1,2,:)
584 dis12 = dis1 - dis2
585 rdis1 = sqrt(sum(dis1**2))
586 rdis2 = sqrt(sum(dis2**2))
587 rdis12 = sqrt(sum(dis12**2))
588
589 ! Calculate the energy associated with the positron-electron
590 ! interaction using the Pollock propagator or the Yukawa potl.
591 if (UsePollock) then
592 DP_Old = DP_Old - LookUpTable(rdis1, rdis2, rdis12, effBeta)
593 else
594 DP_Old = DP_Old + vfun1(rdis1,qep,aep) * effBeta
595 endif
596
597 xper = xn(i,2,1)
598 yper = xn(i,2,2)
599 zper = xn(i,2,3)
600 relec = (/xn(i,1,1), xn(i,1,2), xn(i,1,3)/)
601 dis1 = xn(i,1,:) - xn(i,2,:)
602 dis2 = xn(i+1,1,:) - xn(i+1,2,:)
603 dis12 = dis1 - dis2
604 rdis1 = sqrt(sum(dis1**2))
605 rdis2 = sqrt(sum(dis2**2))
606 rdis12 = sqrt(sum(dis12**2))
607
608 if (UsePollock) then
609 DP_New = DP_New - LookUpTable(rdis1, rdis2, rdis12, effBeta)
610 else
611 DP_New = DP_New + vfun1(rdis1, qep, aep) * effBeta
612 endif
613
614 ! The energy of each positron is calculated using the evalVcg
615 ! function in the vcGrid module, which uses a spline
616 ! interpolation of a vcg file.
617 if (x_changed(i,2) .and. UseExternal) then
618 xEnergyNew(i,2) = evalVcg(xper, yper, zper, potVcg)
619 endif
620
621 ! The energy of each electron is calculated using the eval_pseudo

71

E PIMC Program Code

622 ! function in the epot module.
623 if (x_changed(i,1) .and. UseExternal) then
624 call eval_pseudo(rv, gv_, relec, pot1)
625 xEnergyNew(i,1) = pot1 !electron-solid energy
626 endif
627
628 endif
629 end do
630
631 ! Now we can sum up old and new potentials
632 vsum = 0.0
633 vsumnew = 0.0
634 if (UseExternal) then
635 do i = 1,nb
636 vsum = vsum + sum(xEnergyOld(i,:))
637 vsumnew = vsumnew + sum(xEnergyNew(i,:))
638 enddo
639 end if
640
641 ! The energy difference between the old and new state, times an
642 ! effective beta (deltaE*beta), is stored as "vchange"
643 vchange = (vsumnew - vsum)*effBeta + DP_New - DP_Old
644 det = -vchange
645 de = dlog(ran1(rank) + 1.0d-10) ! de
646 ac = 0.0d0
647 accm = 0.0d0
648 ! We accept the move only if exp(-beta*deltaE) > eta, or
649 ! -beta*deltaE > log(eta). In these variables, this means
650 ! that we accept if "det" > "de".
651 if (det > de) then
652 gsum = 1.0 !dispense with cavity
653 if (mod(irun,10).eq.0) then
654 accm = 1.0d0
655 write(*,*) "CM MOVE ACCEPTED!"
656 else
657 ac=1.0d0 ! Flag the fact that a move has been accepted
658 end if
659 vee = vsumnew
660 do i = 1,nb
661 do j = 1,2
662 if(x_changed(i,j)) then
663 x(i,j,:) = xn(i,j,:)
664 if(i==1) x(nb+1,j,:) = xn(nb+1,j,:)
665 xEnergyOld(i,j) = xEnergyNew(i,j)
666 endif
667 enddo
668 enddo
669 else

72

E PIMC Program Code

670 vee = vsum
671 do i = 1,nb
672 do j = 1,2
673 if(x_changed(i,j)) then
674 xn(i,j,:) = x(i,j,:)
675 if(i==1) xn(nb+1,j,:) = x(nb+1,j,:)
676 xEnergyNew(i,j) = xEnergyOld(i,j)
677 endif
678 enddo
679 enddo
680 end if
681
682 yuk_e_poo = 0.0
683 ! Add up the Coulombic energy in the beads, using Yukawa potential.
684 ! We currently use the Yukawa potential to actually calculate the
685 ! energy, even when we were using the Pollock propagator to
686 ! determine which moves to accept. This will be modified in future
687 ! investigations.
688 do i = 1,nb
689 rdis1 = sqrt(sum((xn(i,1,:)-xn(i,2,:))**2))
690 yuk_e_poo = yuk_e_poo + vfun1(rdis1,qep,aep)
691 enddo
692 vee = (vee + yuk_e_poo) / float(nb)
693
694 ! Do some energy calculations...
695
696 if (irun.gt.nequil) then
697
698 energy = 1.5/beta*nb*2 - vquant()*nb*amass/2/beta**2 + vee
699
700 ! There used to be a subroutine named "virial" that would
701 ! calculate the kinetic energy of the beads using the
702 ! virial estimator. This needs to be reimplemented with the
703 ! Pollock propagator.
704 !vir = virial()
705 !energyV = vir
706
707 energy_count = energy_count + 1
708 energy_ave = energy_ave + energy
709 energyV_ave = energyV_ave + vee
710 energy2_ave = energy2_ave + energy**2
711 !energyV2_ave = energyV2_ave + energyV**2
712
713 if (mod(irun,jump)==0) then
714 ! no virials now
715 write(13,*) energy2_ave/energy_count
716 write(14,*) energy, vee
717 write(15,*) energy_ave/energy_count, energyV_ave/energy_count

73

E PIMC Program Code

718
719 ! alternate versions of the above with virials
720 !write(13,*) energy2_ave/energy_count, energyV2_ave/energy_count
721 !write(14,*) energy, energyV
722 !write(15,*) energy_ave/energy_count, energyV_ave/energy_count
723 end if
724 end if
725
726 !uncomment to analyze with acf.f90:
727 !if ((90000<=irun) .and. (irun<100000)) write(30,*) energy, energyV
728 !if ((190000<=irun) .and. (irun<200000)) write(31,*) energy, energyV
729
730 end subroutine move
731
732 !______ VFUN1 FUNCTION _______!
733
734 real function vfun1(r,q,a)
735 implicit none
736 real :: r,a
737 real :: q(2)
738
739 ! This gives the potential energy due to the electron-positron
740 ! interaction, using the Yukawa potential (an approximation to
741 ! the Coulomb potential).
742
743 vfun1 = q(1) * q(2) * (1-exp(-r/a))/(r)
744 end function vfun1
745
746
747 !_______VQUANT FUNCTION_______!
748
749 real function vquant()
750 implicit none
751 real :: dx,dy,dz,dr2
752
753 ! Quantum Potential Function
754 ! vquant simply returns the sum of the distances between beads
755 ! as you count around the chain, which is used in calculating
756 ! the energy.
757
758 vquant = 0.0
759 do ic = 1, 2
760 do ib = 1, nb
761 dx = x(ib,ic,1) - x(ib+1,ic,1)
762 dy = x(ib,ic,2) - x(ib+1,ic,2)
763 dz = x(ib,ic,3) - x(ib+1,ic,3)
764 dr2 = dx**2 + dy**2 + dz**2
765 vquant = vquant + dr2

74

E PIMC Program Code

766 end do
767 end do
768 return
769 end function vquant
770
771 !_______Trial staging move SUBROUTINE_______!
772
773 subroutine tryboth(xnew)
774 implicit none
775 integer :: is = 1 !(rightnow, a dummy) variable for gaussian RNG
776 real, intent(INOUT), DIMENSION(:,:,:) :: xnew
777 double precision :: const, g
778
779 const=2.0d0*wave*wave/dfloat(nb)
780
781 x_changed(:,:) = .FALSE.
782
783 ! We pick the new bead positions according to a Gaussian
784 ! Distribution:
785 charge: do ic=1,2 ! loop over the electron (1) and positron (2)
786 dim: do id=1,3 ! "id" is the axis direction
787
788 ! We go from the j bead to the j+mb bead
789 ! (j is selected at random)
790 j=int(nb*ran1(rank))+1
791
792 beads: do i=1,mb
793
794 ib=j+mb-i+1
795
796 ! Account for periodicity in the chain:
797 if (ib .GT. nb) ib = ib-nb
798
799 ! The gaussian width depends on which bead we are at,
800 ! using an interpolation formula due to Levy.
801 g=const*dfloat(mb-i+1)/dfloat(mb-i+2)
802 xnew(ib,ic,id) = (xnew(ib+1,ic,id)*(mb-i+1)+xnew(j,ic,id)) &
803 /float(mb-i+2) + gauss(g,is)
804
805 ! Flag the fact that this bead has been moved:
806 x_changed(ib,ic) = .TRUE.
807
808 ! Close the chain if we have moved the 1st bead:
809 if(ib == 1) then
810 xnew(nb+1,ic,id) = xnew(1,ic,id)
811 endif
812
813 end do beads

75

E PIMC Program Code

814 end do dim
815 end do charge
816
817 end subroutine tryboth
818
819 !______CM MOVES SUBROUTINE____________!
820
821 subroutine move_cm(xnew)
822 implicit none
823 real (dp) :: d(3)
824 real, intent(INOUT), DIMENSION(:,:,:) :: xnew
825
826 ! Every 10 passes, we attempt a center of mass move, where the
827 ! entire chain is relocated by up to 0.1 a.u.
828
829 d(1) = 0.2*ran1(rank) - 0.1
830 d(2) = 0.2*ran1(rank) - 0.1
831 d(3) = 0.2*ran1(rank) - 0.1
832 do ic = 1,2
833 do ib = 1,nb+1
834 xnew(ib,ic,:) = xnew(ib,ic,:) + d
835 end do
836 end do
837 x_changed(:,:) = .true.
838
839 end subroutine move_cm
840
841
842 ! _______BINIT SUBROUTINE _______ !
843
844 subroutine binit(nbns, rbmax, rforbin)
845 implicit none
846 integer :: nbns
847 integer :: ibn
848 real :: rbmax
849 real, intent(out) :: rforbin(nbns) ! radius corresponding to bin
850
851 ! The array "rforbin" contains the r value (in a.u.) corresponding
852 ! to each bin (for radial binning)
853
854 do ibin = 1, nbns
855 rforbin(ibin) = (ibin - .5)*rbmax / float(nbns)
856 end do
857 end subroutine binit
858
859 ! _______RADIAL BINNING SUBROUTINE ___ !
860
861 subroutine RadialBin()

76

E PIMC Program Code

862
863 ! The separation of each electron-positron pair is calculated
864 ! and binned in the array "radbin"
865
866 do ib = 1, nb
867 rrel = (x(ib,1,1) - x(ib,2,1))**2 + &
868 (x(ib,1,2) - x(ib,2,2))**2 + (x(ib,1,3) - x(ib,2,3))**2
869 rrel = rrel ** .5
870 ibin = int(rrel/rbinmax*float(nbins))
871 radbin(ibin+1) = radbin(ibin+1)+1
872 end do
873 end subroutine RadialBin
874
875 ! _______G(r) BINNING SUBROUTINE ___ !
876
877 subroutine GofR_Bin()
878 real (dp) :: rrel
879 integer :: ibin
880
881 ! The pair correlation function g(r) is calculated.
882 ! First, we bin the distances between each positron bead
883 ! and each solid atom:
884
885 do ib = 1, nb ! Measure g(r) from each positron bead:
886 gr_pt = x(ib,2,:)
887 gr_pt = matmul(tmat,gr_pt) ! Map bead position into
888 ! lattice vector units.
889 gr_pt = gr_pt - int(minval(gr_pt)) + 1 ! Add enough integers to
890 ! make them all +ve.
891 gr_pt = gr_pt - int(gr_pt) ! Put it back into 1st zone.
892 gr_pt = matmul(rv,gr_pt) ! Map back into cartesian coordinates.
893 do i = 1, gr_nclus
894 rrel = norm(gr_clus(:,i)-gr_pt)
895 ibin = int(rrel/gr_dist*float(nbins))
896 gr_bead_bin(ibin+1) = gr_bead_bin(ibin+1)+1 ! +1 prevents prob’s
897 ! when ibin=0
898 end do
899 gr_bead_count = gr_bead_count + 1
900 end do
901
902 ! Next, we bin the distances from the positron center of mass
903 ! to each solid atom:
904
905 gr_pt = xc2 ! Measure g(r) from positron cm:
906 gr_pt = matmul(tmat,gr_pt) ! Map bead position into lattice
907 ! vector units.
908 gr_pt = gr_pt - int(minval(gr_pt)) + 1 ! Add enough integers to
909 ! make them all +ve.

77

E PIMC Program Code

910 gr_pt = gr_pt - int(gr_pt) ! Put it back into 1st zone.
911 gr_pt = matmul(rv,gr_pt) ! Map back into cartesian coordinates.
912 ! gr_pt = (/2.92, 0.0, 0.0/) ! (Diagnostic for calculating g(r)
913 ! from a fixed point.)
914 ibin = int(gr_pt(1)/15.0*float(nbins))
915 do i = 1, gr_nclus
916 rrel = norm(gr_clus(:,i)-gr_pt)
917 ibin = int(rrel/gr_dist*float(nbins))
918 gr_cm_bin(ibin+1) = gr_cm_bin(ibin+1)+1
919 end do
920 gr_cm_count = gr_cm_count + 1
921
922 end subroutine GofR_Bin
923
924
925 ! _______CARGE OVERLAP SUBROUTINE ___ !
926
927 subroutine ChargeOverlap()
928 implicit none
929
930 integer :: ib
931 real (dp) :: cdt
932
933 ! c_overlap and c_overlap_zero are used in different models for
934 ! finding the positron lifetime.
935 ! * c_overlap is calculated based on one of 5 or 6 models that
936 ! we adjust (e.g. Boronski-Nieminnen model, which is appropriate
937 ! for electrons in metals). Currently set for semiconductor.
938 ! * c_overlap_zero is Gamma_IPM, the annihilation rate in the
939 ! independent particle model. (This ignores exchange-correlation
940 ! effects.)
941
942 do ib = 1, nb
943 if(x_changed(ib,2) .OR. (irun == nequil+1)) then
944 ! positron is replaced in periodic unit cell in evalVcg routine
945 xper = x(ib,2,1)
946 yper = x(ib,2,2)
947 zper = x(ib,2,3)
948 cdt = evalVcg(xper, yper, zper, cdVcg)
949 if (cdt < 0) then
950 write(*,*) ’cdt is negative : ’, cdt
951 ! spline causes (small) unphys osc in cdt; enforce >0
952 if (cdt < 0.0) cdt = 0.0
953 end if
954 xOverlap(ib) = cdt
955 else
956 cdt = xOverlap(ib)
957 endif

78

E PIMC Program Code

958
959 gam = gammaV(xper,yper,zper,gamVcg,cdt)
960
961 c_overlap = c_overlap + cdt * gam
962 c_overlap_zero = c_overlap_zero + cdt
963 end do
964
965 end subroutine ChargeOverlap
966
967 ! _______CORRELATION SUBROUTINE____ !
968
969 subroutine DoCorrelation()
970 implicit none
971 integer :: i,j,k,s
972 real (dp) :: R_Dist_Sqr
973
974 do k = 1, CorrelationCounts
975 i = int(nb*ran1(rank))+1
976 do s = 1, nb
977 if (i==s) CYCLE ! Don’t bother calculating the distance
978 ! between a bead and itself.
979 ! Calculate the square of the distance between the i-th and
980 ! s-th bead:
981 R_Dist_Sqr = sum((x(i,1,:)+x(i,2,:)-x(s,1,:)-x(s,2,:))**2) / 4.0
982 j = s-i+1
983 if(j<1) j = j + nb
984 R_Correlation(j) = R_Correlation(j) + R_Dist_Sqr
985 enddo
986 ! R_Correlation(1) will always be zero, so we can use it to count
987 ! the number of iterations:
988 R_Correlation(1) = R_Correlation(1) + 1.0
989 enddo
990 end subroutine DoCorrelation
991
992 ! _______XYZBIN SUBROUTINE_________ !
993
994 subroutine makexyzbin(elecb,posib)
995 implicit none
996 integer :: il, jl, kl
997 integer :: ic
998 real :: side,halfside
999 real :: xper, yper, zper ! bead within periodic box

1000 real :: elecb(limlow:limhi, limlow:limhi, limlow:limhi)
1001 real :: posib(limlow:limhi, limlow:limhi, limlow:limhi)
1002 real :: epsil = 0.01 ! extra bit for comparison of periodic locations
1003
1004 ! This assumes that half side of box is |limlow|*delta = limhi*delta
1005 side = (2*limhi + 1)*delta

79

E PIMC Program Code

1006 halfside = side/2.0
1007 charge: do ic = 1, 2
1008 bead: do ib = 1, nb
1009 xper = x(ib,ic,1) - anint(x(ib,ic,1)/side) * side
1010 yper = x(ib,ic,2) - anint(x(ib,ic,2)/side) * side
1011 zper = x(ib,ic,3) - anint(x(ib,ic,3)/side) * side
1012 if(xper*xper > halfside*halfside + epsil) then
1013 write(*,*) ’over’
1014 write(*,*) ’ib, x ’, ib, x(ib,ic,1),xper
1015 STOP
1016 end if
1017 if(yper*yper > halfside*halfside + epsil) then
1018 write(6,*) ’over’
1019 write(*,*) ’ib, y ’, ib, x(ib,ic,2), yper
1020 STOP
1021 end if
1022 if(zper*zper > halfside*halfside + epsil) then
1023 write(6,*) ’over’
1024 write(*,*) ’ib, z ’, ib, x(ib,ic,3), zper
1025 STOP
1026 end if
1027
1028 il = anint(xper/delta)
1029 jl = anint(yper/delta)
1030 kl = anint(zper/delta)
1031
1032 if(ic.eq.1) elecb(il,jl,kl) = elecb(il,jl,kl)+1.0
1033 if(ic.eq.2) posib(il,jl,kl) = posib(il,jl,kl)+1.0
1034 end do bead
1035 end do charge
1036
1037 end subroutine makexyzbin
1038
1039 !_______GAUSSIAN FUNCTION_______!
1040
1041 double precision function gauss(g,ix)
1042 implicit double precision (a-h, o-z)
1043 double precision :: rr, ss
1044 integer :: ix
1045
1046 rr = (-dlog(ran1(rank)+1.0d-10)*g) ** 0.5
1047 ss = 6.283185307d0*ran1(rank)
1048 gauss = rr*dcos(ss)
1049
1050 end function gauss
1051
1052 !______READ INPUT FILE___________!
1053

80

E PIMC Program Code

1054 subroutine ReadInput()
1055 implicit none
1056 integer :: i,j
1057
1058 open(unit=11,file=’PEZ.in’,status=’old’,action=’read’)
1059 read(11,*);read(11,*) nb ! # beads for the particle
1060 read(11,*);read(11,*) mb ! #beads moved per staging pass
1061 read(11,*);read(11,*) npass ! # staging passes
1062 read(11,*);read(11,*) amass ! mass of a single quantum particle
1063 read(11,*);read(11,*) beta ! beta = 1/kT (in au where hbar=1)
1064 read(11,*);read(11,*) hbar ! making hbar smaller reduces quantum
1065 ! effects; hbar=1 in au)
1066 read(11,*);read(11,*) jump ! number of passes between printing
1067 read(11,*);read(11,*) rcav ! radius of spherical cavity, now just
1068 ! a length scale
1069 read(11,*);read(11,*) aep ! Yukawa radius
1070 read(11,*);read(11,*) ninit ! flag for initializing beads from file
1071 read(11,*);read(11,*) nequil ! equilibration steps
1072 read(11,*);read(11,*) CorrelationCounts ! # of corr calculations
1073 read(11,*);read(11,*) deg
1074 read(11,*);read(11,*) vcgFile
1075 read(11,*);read(11,*) eptFile
1076
1077 ! Read Parameters
1078 read(11,*);read(11,*) i,j
1079 if(i == 1) then
1080 UsePollock = .TRUE.
1081 else
1082 UsePollock = .FALSE.
1083 end if
1084 if(j == 1) then
1085 UseExternal = .TRUE.
1086 else
1087 UseExternal = .FALSE.
1088 end if
1089
1090 close(11)
1091
1092 if(npass <= nequil) then
1093 write(*,*) ’npass is not greater than nequil :(’
1094 STOP
1095 end if
1096
1097 ! The free particle deB wavelength is a useful bit of trivia:
1098 wave = (beta*hbar*hbar/amass)**0.5
1099 print*, ’Free particle deB wavelength:’, wave
1100
1101 end subroutine ReadInput

81

E PIMC Program Code

1102
1103 !______INITIALIZE___________!
1104
1105 subroutine Initialize()
1106 implicit none
1107
1108 call MPI_INIT(ierr)
1109 write(*,*) "Initialized MPI, error =", ierr
1110 call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
1111 call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
1112 write(*,*) ’Process ’, rank, ’ of’, size, ’ is alive!’
1113
1114 ! We need to initialize everything:
1115 ! Starting with allocating memory for beads arrays and energies
1116
1117 allocate(x(nb+1,2,3), stat = error)
1118 if (error .ne. 0) then
1119 write(*,*) "Unable to allocate memory for the array: x(:,:,:)"
1120 stop
1121 endif
1122 allocate(xn(nb+1,2,3), stat = error)
1123 if (error .ne. 0) then
1124 write(*,*) "Unable to allocate memory for the array: xn(:,:,:)"
1125 stop
1126 endif
1127 allocate(xEnergyOld(nb+1,2), stat = error)
1128 if (error .ne. 0) then
1129 write(*,*) "Unable to allocate memory for array: xEnergyOld(:,:)"
1130 stop
1131 endif
1132 allocate(xEnergyNew(nb+1,2), stat = error)
1133 if (error .ne. 0) then
1134 write(*,*) "Unable to allocate memory for array: xEnergyNew(:,:)"
1135 stop
1136 endif
1137 allocate(xOverlap(nb), stat = error)
1138 if (error .ne. 0) then
1139 write(*,*) "Unable to allocate memory for the array: xOverlap(:)"
1140 stop
1141 endif
1142 allocate(x_changed(nb,2), stat = error)
1143 if (error .ne. 0) then
1144 write(*,*) "Unable to allocate memory for the array: x_changed(:)"
1145 stop
1146 endif
1147 allocate(R_Correlation(nb), stat = error)
1148 if (error .ne. 0) then
1149 write(*,*) "Unable to allocate memory for the array: R_Correlation"

82

E PIMC Program Code

1150 stop
1151 endif
1152
1153 TempFort=’for31_centroids’
1154 open(unit=31,file=TempFort,status=’replace’,action=’write’)
1155
1156 TempFort=’for12_bead_disp’
1157 open(unit=12,file=TempFort,status=’replace’,action=’write’)
1158
1159 TempFort=’for13_aveE2’
1160 open(unit=13,file=TempFort,status=’replace’,action=’write’)
1161
1162 TempFort=’for14_E_V’
1163 open(unit=14,file=TempFort,status=’replace’,action=’write’)
1164
1165 TempFort=’for15_aveE_aveV’
1166 open(unit=15,file=TempFort,status=’replace’,action=’write’)
1167
1168 TempFort=’for30_c_overlap’
1169 open(unit=30,file=TempFort,status=’replace’,action=’write’)
1170
1171 ! And initializing the thermal density propagator table:
1172 call CreateTable(beta/float(nb))
1173
1174 ! Setting the cartesian bins to zero
1175 elecbin(:,:,:) = 0
1176 posibin(:,:,:) = 0
1177
1178 ! Initializing radial bin for e+ and e- separation
1179 rbinmax = 10.0
1180 radbin(:) = 0.0
1181 call binit(nbins, rbinmax, rforbin)
1182
1183 ! Zeroing the centroid positions
1184 xc1(:) = 0.0
1185 xc2(:) = 0.0
1186 xc(:) = 0.0
1187
1188 ! Initializing variables for g(r) calculation
1189 gr_dist = 20.0
1190 gr_pt(:) = 0.0
1191 gr_bead_count = 0
1192 gr_cm_count = 0
1193 gr_bead_bin(:) = 0.0
1194 gr_cm_bin(:) = 0.0
1195
1196 ! Initializing energy variables
1197 energy_ave = 0.0d0

83

E PIMC Program Code

1198 energyV_ave = 0.0d0
1199 energy2_ave = 0.0d0
1200 energyV2_ave = 0.0d0
1201 energy_count = 0
1202 x_changed(:,:) = .TRUE.
1203 xEnergyOld(:,:) = 0.0
1204 xEnergyNew(:,:) = 0.0
1205
1206 ! Zero the bin for the bead correlation function:
1207 R_Correlation(:) = 0.0
1208
1209 ! Initialize positron overlap with charge density to zero
1210 c_overlap = 0.0
1211 c_overlap_zero = 0.0
1212 c_overlap_count = 0
1213
1214 ! Create an initial bead configuration:
1215 ! A gaussian distribution (i.e., free particle)
1216 call init_beads(ninit)
1217
1218 ! Initialize information for potential, charge density and gamma
1219 ! set the input and output unit numbers and read the main input file
1220 iui = 5
1221 iuo = 6
1222
1223 write(*,*) "Program PEZ: PIMC with Atomic Potl and Density Matrices"
1224 write(iuo,*) ’***** positron-potential information *****’
1225 write(iuo,*) ’vcg datafile produced by fepot:’
1226 write(iuo,*) vcgFile
1227
1228 ! read in vcg file generated by fepot
1229 ! initialize cubic spline fit for potential and charge density
1230 call initVcg(vcgFile, potVcg, cdVcg, gamVcg, rv_, deg)
1231 tmat = transpose(inverse(rv_))
1232
1233 ! find inverse lattice vectors
1234 gv_ = potVcg%tmat
1235
1236 ! transpose
1237 rv = transpose(rv_)
1238 gv = transpose(gv_)
1239
1240 ! initialize routine to find electronic pseudopotential
1241 call init_pseudo(rv_, eptFile)
1242
1243 tolcs = 1.0d-12 ! cluster-size tolerance in the electron
1244 ! psuedo-potl calculation
1245 lprint_e = 0 ! logical, can have clust_elec print more

84

E PIMC Program Code

1246 ! information about the electron potential
1247
1248 periodic = .true.
1249
1250 ! find cluster contributing to electron pseudopotential
1251 call clust_elec(rv, gv, periodic, basis, itype, rmax_e, tolcs, &
1252 iuo, lprint_e, ncvec, clus, ictyp, lclus)
1253 call clust_gofr(rv, gv, basis, itype, tolcs, iuo, lprint_e, ncvec, &
1254 gr_clus, gr_nclus, ictyp, lclus, gr_dist, gr_rmax)
1255
1256 acsum = 0.0d0 ! measure of acceptance rate
1257
1258 end subroutine Initialize
1259
1260 !______RANDOM NUMBER GENERATING FUNCTION____!
1261
1262 double precision function ran1(idum)
1263 implicit none
1264 double precision :: r(97)
1265 integer, intent(IN) :: idum
1266 save
1267 integer, parameter :: M1=259200,IA1=7141,IC1=54773
1268 real, parameter :: RM1=1.0d0/M1
1269 integer, parameter :: M2=134456,IA2=8121,IC2=28411
1270 real, parameter :: RM2=1.0d0/M2
1271 integer, parameter :: M3=243000,IA3=4561,IC3=51349
1272 integer :: IX1, IX2, IX3, jjj
1273 integer :: iff=0
1274 if (idum < 0 .or. iff == 0) then
1275 iff = 1
1276 IX1 = mod(IC1-idum,M1)
1277 IX1 = mod(IA1*IX1+IC1,M1)
1278 IX2 = mod(IX1,M2)
1279 IX1 = mod(IA1*IX1+IC1,M1)
1280 IX3 = mod(IX1,M3)
1281 do jjj = 1,97
1282 IX1 = mod(IA1*IX1+IC1,M1)
1283 IX2 = mod(IA2*IX2+IC2,M2)
1284 r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1
1285 end do
1286 end if
1287 IX1 = mod(IA1*IX1+IC1,M1)
1288 IX2 = mod(IA2*IX2+IC2,M2)
1289 IX3 = mod(IA3*IX3+IC3,M3)
1290 jjj = 1+(97*IX3)/M3
1291 if (jjj > 97 .or. jjj < 1) PAUSE
1292 ran1 = r(jjj)
1293 r(jjj) = (dfloat(IX1)+dfloat(IX2)*RM2)*RM1

85

E PIMC Program Code

1294 end function ran1
1295
1296 end PROGRAM PIMC

86

Acknowledgements

Acknowledgements

I am sincerely grateful to Professor Amy L. R. Bug, my thesis advisor, for her constant

support and assistance. Ever since my first semester when she taught me about the

twin paradox and EPR, piquing my interest in physics, she has encouraged me in my

classwork and has enabled me to be involved in exciting research as an undergraduate.

I also thank Phillip A. Sterne of Lawrence Livermore National Laboratory (LLNL)

for his advice and for the use of his computing resources. Being able to spend a week

at LLNL and to meet scientists using similar methods to ours was invaluable to this

thesis.

I am also grateful to my Swarthmore physics professors. Their dedication to their

students has given me an excellent undergraduate physics education; not only have my

classes been challenging and exciting, but it has been wonderful to have my professors

constantly available to answer my questions and give me new questions to think about.

Finally, I thank my parents, for helping me pursue my dreams and for trying to

understand them.

87

References

References

[1] Y. Ne’eman and Y. Kirsh, The Particle Hunters (University Press, Cambridge,

1996), p. 65.

[2] A. Rich, Rev. Mod. Phys. 53, 127 (1981).

[3] S. J. Wang, B. Wang, J. Zhu, Z. Wang, Y. Q. Dai and C. Q. He, Mater. Sci. Forum

363-365, 219 (2001).

[4] O. Halpern, Phys. Rev. 88, 164 (1952).

[5] R. H. Howell, Sci. and Tech. Rev. (December 1998). Retrieved October 30, 2001,

from LLNL, Positron Facility Website:

http://www.llnl.gov/str/Howell.html

[6] C. G. Fischer, S. H. Connell, P. G. Coleman, F. Malik, D. T. Britton, J. P. F. Sell-

schop, Appl. Surf. Sci. 149, 221 (1999).

[7] D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, New Jersey, 1999),

p. 464.

[8] D. Knapp. Retrieved October 30, 2001, from LLNL, Electron-Positron Beam Fa-

cility Website:

http://www-phys.llnl.gov/H Div/Positrons/PositronFacility.html

[9] J. Nissilä, K. Saarinen, and P. Hautojärvi, Phys. Rev. B 63, 165202 (2001).

[10] A. Dupasquier, “Quasipositronium in Liquids and Solids,” in Positron Solid-State

Physics, edited by W. Brandt and A. Dupasquier (North Holland, New York,

1983).

[11] M. J. Puska, S. Mäkinen, M. Manninen, and R. M. Nieminen, Phys. Rev. B 39,

7666 (1988).

[12] J. H. Hartley, R. H. Howell, P. Asoka-Kumar, P. A. Sterne, D. Akers, A. Denison,

Appl. Surf. Sci. 149, 204 (1999).

88

References

[13] H. Nakanishi, S. J. Wang, and Y. C. Jean, in Positron Annihilation Studies of

Fluids, edited by S. C. Sharma (World Scientific, Singapore, 1988).

[14] Y. C. Jean, in Positron Spectroscopy of Solids, edited by A. Dupasquier and

A. P. Mills, Jr. (IOS, Washington, D.C., 1995).

[15] J. M. Thijssen, Computational Physics (Cambridge University Press, New York,

1999), Chapters 10, 12.

[16] K. Binder, in Encyclopedia of Applied Physics, edited by G. Trigg (VCH Publish-

ers, New York, 1994).

[17] R. Shankar, Principles of Quantum Mechanics (Plenum Press, New York, 1994),

Chap. 21.

[18] T. Reese and B. N. Miller, Phys. Rev. E 47, 2581 (1993).

[19] H. Schmitz and F. Müller-Plathe, J. Chem. Phys. 112, 1040 (2000).

[20] L. Larrimore, R. McFarland, P. Sterne, and A. Bug, J. Chem. Phys. 113, 10642

(2000).

[21] D. J. Griffiths, Introduction to Elementary Particles (Harper and Row, New York,

1987), Chap. 5.

[22] M. J. Puska and R. M. Nieminen, Phys. Rev. B 46, 1278 (1992).

[23] C. Kittel. Introduction to Solid State Physics (John Wiley & Sons, New York,

1996).

[24] E. M. Gullikson, Phys. Rev. B 39, 6128 (1989).

[25] P. Rice-Evans, M. Moussavi-Madani, K. U. Rao, D. T. Britton, and B. P. Cowan,

Phys. Rev. B 34, 6117 (1986).

[26] Y. C. Jean, C. Yu, and D.-M. Zhou, Phys. Rev. B 32 4213 (1985).

[27] E. M. Gullikson and A. P. Mills, Phys. Rev. B 39, 6121 (1989).

89

References

[28] E. J. Woll, in Positron Annihilation, edited by A. T. Stewart and L. O. Roellig,

(Academic Press, New York, 1967).

[29] D. C. Liu and W. K. Roberts, Phys. Rev. 132, 1633 (1963).

[30] Y. Nagai, Y. Nagashima, and T. Hyodo, Phys. Rev. B 60, 7677 (1999).

[31] K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational Materials Science

(Springer, New York, 1999).

[32] D. F. Coker, B. J. Berne, and D. Thirumalai, J. Chem. Phys. 86, 5689 (1987).

[33] M. H. Müser and B. J. Berne, J. Chem. Phys. 107, 571 (1997).

[34] E. L. Pollock, Computational Physics Communications 52, 49 (1988).

[35] E. L. Pollock (personal communication).

[36] P. Hastings, Positronium Annihilation in Insulating Solids, Unpublished Under-

graduate Thesis, Swarthmore College, 2001.

[37] B. Space, D. F. Coker, Z. H. Liu, B. J. Berne, and G. Martyna, J. Chem. Phys.

97, 2002 (1992).

[38] T. Gibson, J. Phys. B 23, 767 (1990).

[39] J. A. Barker, J. Chem. Phys. 70, 2914 (1979).

[40] D. M. Ceperley, Rev. Mod. Phys. 67 279 (1995).

[41] M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994).

[42] M. J. Puska, S. Mäkinen, M. Manninen, and R. M. Nieminen, Phys. Rev. B 39,

7666 (1989).

[43] D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).

[44] V. K. Decyk and D. E. Dauger. Retrieved January 9, 2001 from UCLA Website:

http://exodus.physics.ucla.edu/appleseed/appleseed report01.pdf

90

References

[45] E. M. Gullikson, A. P. Mills, and E. G. McRae, Phys. Rev. B 37, 588 (1988).

[46] M. R. Spiegel and J. Liu, Schaum’s Outlines: Mathematical Handbook of Formulas

and Tables (McGraw-Hill, New York, 1999), Part A Sect. 7.

[47] A. L. R. Bug (personal communication).

[48] E. Wimmer. Retrieved August 4, 2000 from Molecular Simulations Inc. Website:

http://www.msi.com/materials/tech/qm/dft.html

[49] P. A. Sterne and J. H. Kaiser, Phys. Rev. B 43, 13892 (1991).

[50] A. Dupasquier, “Positroniumlike Systems in Solids,” in Positron Solid-State

Physics, edited by W. Brandt and A. Dupasquier (North Holland, New York,

1983).

91

