E72 Laboratory 4
Digital Electronics

This section contains a brief overview of digital electronics, it has enough information for you to complete the labs for this course, but is not meant to be all inclusive. For more information consult Appendix A in the E72 textbook, Electtronics: A Top-Down Approach, Appendix A in the book The Art of Electronics, or another text that covers digital logic.

Up until now the labs have dealt with electricity in its analog form where a quantity is described by the amount of voltage, or current, or charge... expressed as a real number. However a large proportion of electronic equipment, including computers, uses digital electronics where the quantities (usually voltage) are described by two states; on and off. These two states can also be represented by true and false, 1 and 0, and in most physical systems are represented by the voltages 5V and 0V, or something close to that. While the restriction to two states seems limiting it makes many things easier because problems due to noise are minimized. It is generally very easy to reliably distinguish between logic 1 or logic 0.

Since many quantities cannot be represented by two states, more than one binary digit can be used to represent a number. For example the number 2510 (twenty five base 10) can be represented by the binary number 110012. It is easy to convert back and forth from binary to decimal by remembering that each digit in a binary number simply corresponds to a power of 2, as every digit in a decimal number corresponds to a power of 10. Using the previous example:

101
100

24
23
22
21
20

(10)
(1)

(16)
(8)
(4)
(2)
(1)

2
5
=
1
1
0
0
1

2*10
+
5*1
=
1*16
+
1*8
+
0*4
+
0*2
+
1*1

In general an n digit binary number can represent numbers from 0 to 2n-1. For instance a byte is 8 bits and can represent numbers from 0 to 255 (28-1).

Combinatorial Logic

Another advantage of digital electronics is the ability to express signals in terms of logic equations using standard terms from logic: and, or, and not. These functions can be represented by truth tables as shown below with A and B as inputs and C as output.

These logic functions can be represented using a shorthand notation, and is represented by . or &, or is represented by + or #, and not is represented by ~ or ! (there are also other conventions, the most common is to put a bar over the variable). Thus the equation D equals A and B or not C can be represented as

D = A . B+ ˜C or by D = A & B # !C

Obviously this equation has different meanings depending on whether the and or the or function is performed first and parentheses can be used in the normal way to get rid of the ambiguity

D = (A . B)+ ˜C

Other functions that are common are nand and nor. The nand function is an and function followed by a not, nor is an or function followed by not. The symbols used in schematics for these functions are given below:

[image: image13.wmf]-

+

-

+

Comparators

(as many as

you need)

Logic

(Your own

design)

LSB

MSB

Two Bit

Output

[image: image1.wmf]A

B

C

A

B

C

A

B

C

A

C

A

B

C

not

and

or

nand

nor

Logic equations, like any other, can get complicated quickly. To simplify logic equations a system called Boolean algebra (after the mathematician George Boole) was developed. A short selection of its theorems is listed.

	(1) A.0 = 0
	(6) A+1 = 1
	(11) (A.B).C = A.(B.C)

	(2) A.1 = A
	(7) A+Ã = 1
	(12) A.(B+C) = A.B+B.C

	(3) A.Ã = 0
	(8) A+A = A
	(13) A+(B.C)= (A+B).(A+C)

	(4) A+0 = A
	(9) A+B = B+A
	(14) !(A+B) = !(!A.!B)

	(5) A.A = A
	(10) (A+B)+C = A+(B+C)
	(15) !(A.B) = !(!A+!B)

These theorems can be used to simplify equations.

D = (A.B+(A+C.˜C)).A+B
apply 3

D = (A.B+A).A+B
apply 2

D = (A.B+A.1).A+B
apply 12

D = (A.(B+1)).A+B
apply 6

D = A.A+B
apply 5

D = A+B

As with the algebra you learned in elementary school, this kind of simplification gets tedious, and messy, quickly. Luckily there is a graphical shortcut to doing logic minimizations called a Karnaugh map. This introduction will only cover Karnaugh maps with up to four variables, though the technique can be generalized to larger systems - though these systems are usually simplified using computers. Consider the truth table of the equation given above, which is given in the forma of a truth table and a three variable Karnaugh map:

[image: image2.wmf]A

BC

00

01

11

10

0

1

0

1

0

1

1

1

1

1

A

	

B

	

C

	

D

0

	

0

	

0

	

0

0

	

0

	

1

	

0

0

	

1

	

0

	

1

0

	

1

	

1

	

1

1

	

0

	

0

	

1

1

	

0

	

1

	

1

1

	

1

	

0

	

1

1

	

1

	

1

	

1

To get the simplified equation one takes the table and encircles as many 1's as possible in rectangular groups that have 1, 2, 4, or 8 elements (i.e., any power of 2). The idea is to make the groupings as large as possible. For the example above this can be accomplished with 2 groupings:

[image: image3.wmf]A

BC

00

01

11

10

0

1

0

1

0

1

1

1

1

1

If you examine these groupings carefully you can see that the square grouping has no dependence on the variables A or C, and is totally described by the statement B=1. The rectangular group on the other hand has no dependence on B or C and is described by the statement A=1. Therefore to include the elements from both groups we can use the equation A+B. If you had used smaller groups you would have obtained an equivalent, though more complicated, expression. Try it. This graphical method is clearly easier than the technique used earlier that employed algebraic simplifications.

You should examine the map shown above and convince yourself that any grouping of a single element needs all three variables to describe it. For instance the uppermost "1" on the right hand side is described by B.˜C. Ã A grouping of two gets rid of the dependence on one of the variables (the two rightmost ones have no dependence on A and are given by B.˜C). A group of four, as you have seen, depends only on one variable. Therefore by choosing the smallest number of groups (i.e., the largest groups), you will come up with the minimal equation describing those groups. The result obtained with the Karnaugh map is called the minimal sum of products form because it generates the smallest number of product (anded) terms.

Also, if you look at the table again you can convince yourself that it is possible to "wrap-around" the ends of the table, as shown

[image: image4.wmf]A

BC

00

01

11

10

0

1

0

1

0

0

0

0

1

1

 The two groups are represented by B.C (the vertical group) and the group that wraps around by A.˜C.

This technique also works for two variables (trivial), four variables (shown below), and even more (though this gets complicated and will not be described here). A typical four variable map and its groupings are shown here.

[image: image5.wmf]AB

CD

00

01

11

10

00

01

0

1

0

0

1

1

1

1

11

10

0

0

1

0

0

1

0

1

AB

CD

00

01

11

10

00

01

0

1

0

0

1

1

1

1

11

10

0

0

1

0

0

1

0

1

which simplifies to: A.B.D.˜C + Ã.B.˜D + Ã.C + ˜B.C. Prove it to yourself.

Sequential Logic

The digital logic described thus far is called combinatorial logic because the output depends solely upon the presently existing combination of the inputs; past values of the inputs are not important. Sequential logic deals with the issue of time dependence and can get much more complicated than combinatorial logic -- much in the same way that differential equations are more difficult than algebraic equations. The fundamental building block of sequential circuits is the flip-flop (which flips and flops between different logic states) of which there are several. The simplest flip-flop is the R-S, or Set-Reset flip flop which is made up of two gates:

[image: image6.wmf]S

Q

R

Q

S

Q

R

Q

Note that flip flops are often quite complicated at the gate level and are frequently represented by a "black box" with inputs and outputs as shown at right.

Let's see how this device operates by examining the four possible inputs, if S,R=1,0 then Q=1 and ˜Q=0, therefore S=1 sets Q. If S,R=0,1 then Q=1 and ˜Q=0, or R=1 resets Q. If S,R=1,1 then Q=0 and ˜Q=0; a result that doesn't seem to make sense, but we will deal with this soon. If S,R=0,0 then you can convince yourself that the outputs are indeterminate -- that is you cannot figure out what they are. This is where the time dependence of the circuit is important: if S,R goes from the 1,0 to the 0,0 state then Q=1 and ˜Q=0; if S,R goes from 0,1 to 0,0 then Q=0 and ˜Q=1; but if S,R goes from 1,1 to 0,0 then Q and ˜Q are still indeterminate and so we will call 1,1 the disallowed state and design our circuit so this state is not used. The 0,0 state is called the hold state. The truth table for this circuit is given as:

	Sn
	Rn
	Qn

	0
	0
	Qn-1

	0
	1
	0

	1
	0
	1

	1
	1
	Disallowed

Note that the variables have a subscript associated with them. This subscript denotes time, so that if S,R=0,0 at time n then the output Q retains the value it had at time n-1.

There are several other types of flip-flops, but the most popular are the D and J-K flip-flops which have the following truth tables:

	Dn-1
	Qn
	
	Jn-1
	Kn-1
	Qn

	1
	1
	
	0
	0
	Qn-1

	0
	0
	
	0
	1
	0

	
	
	
	1
	0
	1

	
	
	
	1
	1
	˜Qn-1

and the circuit symbols:

[image: image7.wmf]Q

D

Clock

Q

Q

Clock

Q

J

K

Note that these flip-flops have another input called the "clock". The transition from time n-1 to time n occurs at some transition of the clock; usually when the clock goes from low to high (rising edge) or from high to low (falling edge), but is sometimes level sensitive (for instance the output may do what is required by the input while the clock is high and holds the last value when the clock is low). In addition to the clock there are sometimes reset inputs to clear the output to logic 0, and preset inputs to set the outputs to logic 1.

To further understand these devices consider the circuit shown below (actually a simplified portion of an integrated circuit, the 7493):

Note: the inverted outputs of the flip-flops aren't shown since we aren't using them.

[image: image8.wmf]K

J

Q

b

Clock

b

K

J

Q

a

Clock

a

K

J

Q

c

Clock

c

Q

a

Q

b

Q

c

Logic 1

Clock

a

Assume that the flip-flops are falling edge triggered and that the outputs are initially all 0, then if a series of clock pulses is fed into the circuit, Clocka, you should be able to convince yourself that the output is given by:

[image: image9.wmf]clock

Qa

Qb

Qc

Thus Qa is half the frequency of the clock, Qb half that of Qa, and Qc half that of Qb; making Qc 1/8 the frequency of the clock. Also if you use Qa through Qc to represent a number (Qa=least significant bit), then the output of this circuit cycles repetitively through eight states representing the numbers 010 to 710 (02 to 1112). Therefore this circuit is known as a divide by eight counter. The actual 7493 is a little more complicated and includes a reset signal so that you can reset the counter to 0 at any time.

Thus ends the introduction to digital logic.

The A/D Convertor

An Analog-to-Digital (A/D) convertor measures an analog voltage and determines a digital (binary) representation of it. For example a three bit convertor with a range of 0-5 volts would have the following outputs:

	Input

Voltage
	Decimal

Output
	Binary

Output

	<0.625 V
	0
	000

	0.625-1.25V
	1
	001

	1.25-1.875V
	2
	010

	1.875-2.5V
	3
	011

	2.5V-3.125V
	4
	100

	3.125-3.75
	5
	101

	3.75-4.375
	6
	110

	>4.375 V
	7
	111

Thus, a binary output of 110 would signify a voltage between 3.75 and 4.375 volts.

Building Your Very Own A/D Convertor

Your assignment this week is to build a two-bit flash A/D convertor with an input range of 0-4 volts. If the voltage, vin, is less than 1volt, the two bit output should be 00. If 1v< vin <2v the output should be 01. If 2v< vin <3v the output should be 10. If 3v< vin the output should be 11. The two bit output should be on two LED’s that you put in the circuit (not on the LED’s supplied on the breadboard). A lit LED should denote a logic 1. The design of the circuits in this lab is left up to you.

The LM311 Comparator - Analog Meets Digital

For your circuit you will need a circuit element called a comparator. The LM311 is an example of a comparator -- it compares two signal and determines which is higher. Its circuit symbol is identical to that of an op-amp, but it is meant to be used without feedback. If the voltage at the “+” input is greater than the voltage at the “-” input the output is high; if the “-” input is greater , the output is low. However, if you look at the output, you will see that there are two output pins, EMIT OUT and COL OUT, which are connections to an NPN transistor that is integral to the chip. If the comparator output is high you can generally assume the transistor is in cutoff, and if it is low the transistor is saturated. Therefore if you want an output to be either 5V (high) or 0V (low) then you could attach the COL OUT to 5V through a resistor (10 k will work, but the value is not critical), and EMIT OUT to ground. Then when the transistor is in cutoff the output is 5 and when it is saturated the output is near 0 volts. Why?

[image: image10.wmf]Col Out

Emit Out

Non-inverting

input

Inverting

input

-

+

Circuit Symbol

Non-inverting

input

Inverting

input

Col Out

Emit Out

Alternate Circuit Symbol

[image: image11.wmf]Col Out

Emit Out

Non-inverting

input

Inverting

input

311

Pinout

-Vcc

+Vcc

[image: image14.wmf]+5volts

3volts

2volts

1volt

R

R

R

2R

How the convertor works:

The block diagram shows all of the parts of the A/D convertor. The two inputs of each comaprator are tied to the input voltage and a reference voltage. The reference voltage is different for each comparator. The comparators determine the range of the input voltage (vin<1V, 1v< vin <2v, 2v< vin <3v, or 3v< vin), and the logic determines the appropriate two-bit output based on the outputs from the comparators (00, 01, 10 or 11). These two bits should then drive two LED’s (see below).

A proposed procedure (you may attack this problem in however you want to.)

1) Hook up as many comparators as you need. Verify that that they work as expected. One way to get 3, 2, and 1 volts from a 5 volt supply is shown below.

2) Build the logic circuit and connect the LED’s (and their associated circuitry). Verify that it works.

You will probably want to use several chips that we haven’t used yet in this class. Some logic chips of interest (look up pinouts and other chips in TTL Data Book - there should be several lying around the lab, or in the bookcase in the hallway) include:

7400 - four two input nand gates.

7402 - four two input nor gates.

7404 - six invertors.

7408 - four two input and gates.

7432 - four two input or gates.

As a practical consideration, TTL can sink (draw current through a load from Vcc) much more current than it can source (send through a load to ground). You should therefore drive the LED's with a circuit similar to the one shown - a high output from the TTL gate will give a low from the invertor, lighting the LED. R should be chosen to allow 5-10 mA of current through the LED (LED’s have roughly a 1 volt drop when current is flowing). Before actually building your circuit, make any obvious simplifications that will reduce the number of integrated circuits needed.

[image: image12.wmf]TTL

Gate

LED

Vcc = 5V

R

Bottom

view of

LED

Anode

Cathode

For your lab notebooks.

Include a copy of this handout.

Include a schematic diagram of your circuit.

Describe how you picked the value for R in the LED driver circuit.

Include data that verifies that the circuits work as expected by recording the binary output of your A/D convertor along with the corresponding analog input voltage. Show that you are getting the values you expect.

A�
B�
C�
�
A�
B�
C�
�
A�
C�
�
0�
0�
0�
�
0�
0�
0�
�
0�
1�
�
0�
1�
0�
�
0�
1�
1�
�
1�
0�
�
1�
0�
0�
�
1�
0�
1�
�
�
�
�
1�
1�
1�
�
1�
1�
1�
�
�
�
�
�
and�
�
�
�
or�
�
�
not�
�
�

�

�

