Comparing Centralized and Decentralized
Distributed Execution Systems

Mustafa Paksoy Javier Prado
mpaksoyl@swarthmore.edu jpradol@swarthmore.edu
May 12, 2006
Abstract

We implement two distributed execution systems one centralized and
one decentralized. We test these systems in terms of how well they handle
a high number of requests, distribute execution, and tolerate heterogene-
ity. Given the small size and homogeneity of our lab environment we
find that the centralized system provides a much simpler yet equally ef-
fective alternative to the decentralized system. However, in the simulated
environments, we find that the decentralized system has great potential
to tolerate heterogeneity and scale to wider area networks. This system
needs to be tested with many more nodes in order to effectively test its
ability to scale.

1 Introduction

Computation resources on most networks are highly underutilized. At the same
time peak usage of individual workstations usually exceeds the workstations’
capabilities. It makes sense to move part of this workload to unused workstations
and keep used workstations uncluttered.

One way to deal with this problem is by distributed execution. By execut-
ing processes on different workstations, we can reduce the load on heavily used
workstations and take advantage of underutilized workstations. More specifi-
cally, if a user has a job that requires the execution of several programs, an
example being an experiment that needs to be run several times, that user
could potentially distribute his programs within a network of workstations and
considerably cut down on the time it would take the user to complete his job.

As with most tasks in distributed systems, distributed execution can be
managed in either a centralized or a decentralized manner. In this paper we
compare two distributed execution systems, one being centralized and one being
decentralized, and evaluate their performance in different tasks.

The centralized solution is built around a central server that keeps track of
registered hosts and distributes them using the round robin algorithm. Hosts
and clients talk to the server over TCP making requests and receiving replies.

Our second solution is a system that distributes daemons on a group of
workstations. These daemons communicate via UDP broadcasts. A client ap-
plication communicates with the local daemon through IPC without having to
go over the network. This system is distributed in nature because there is no
central authority directing the execution of jobs; the decision making process is
done by each workstation with the help of its neighbors on the network.

Both the centralized system and the decentralized systems will take advan-
tage of the shared network file system that is available in our laboratory. Our
systems run processes remotely using ssh. The centralized system distributes
execution to workstations in a round-robin fashion. The decentralized system
distributes execution of jobs using a least-loaded-workstation heuristic.

2 Related Work

Each of the research papers we have reviewed have implemented some sort
of solution to the problem of underutilized workstations. In most cases each
solution addresses a network of workstations (NOW) problem and attempts to
resolve it.

e Condor:

In the Condor system, the authors propose to use a hybrid of job schedul-
ing coupled with a remote execution program. The authors use this com-
bination of approaches because they want a system that is transparent
to the users, and is not a burden upon the users of this system. The
main focus of the Condor solution is to have a system where users who
want to execute long background jobs could do so at the expense of using
underutilized workstations. [1]

e Butler System:

A similar solution to the underutilized workstation problem is presented
by [3]. Here, the Butler system makes use of idle workstations in a network
of workstations environment. In this Butler system only one remote job
can execute per remote machine, although the number of remote jobs is
not limited with respect to the user distributing these remote jobs. A
distinguishing feature of this solution is that the network of workstations
is implemented with a shared file system, which is very similar to our
network.

e Algorithm analysis:
Finally there is a proposed solution by [2], where only the gathering of data
about a network of workstations is done in order to develop an algorithm
for scheduling remote processes. We must be clear that one of the research
areas of this paper concerns a distributed job across multiple workstations
which we are not attempting to emulate. While this paper does consider
parallel jobs, it also examines the general issue of determining how long a
given workstation is going to be left idle by its user. From this analysis,

the author presents an ability to make predictions about the capacity
of the idle systems from the manager’s point of view allowing potential
clients of this solution to predict, based on the client’s knowledge of its
computing demands, whether or not its job can be completed before the
remote workstation is claimed by its remote user.

3 Design

3.1 Centralized Server

The centralized system is designed around a central workstation that maintains
a list of hosts. Hosts are workstations which are able to accept jobs from neigh-
boring workstations on the network. The central workstation accepts requests
from potential hosts and registers them within its table of hosts. After a few
hosts have been registered, any workstation that needs to run a remote job can
simply query the central workstation and receive an address of one of the pre-
viously registered hosts. As a subtle point of reference, the client issuing the
request for the use of a host does not have to be a registered user.

The way our workstations actually communicate with the central server is
through the use of a TCP connection. After a connection has been established,
communication is relatively straightforward: a short message is sent to the cen-
tral server indicating the incoming request as either: register a workstation, get
a workstation’s address, or unregister a workstation. Once the central server has
completed the request of the workstation, it returns a message back to the work-
station indicating if the requested action was successful, with an accompanying
IP address if the request was for getting a host.

The workstation requesting an IP address executes a ssh session with the
remote workstation’s IP address and executes the job remotely. A remote exe-
cution is possible for our system because we have a shared network file system.
All the workstation has to provide is a path to the program to be run remotely
when running the ssh command. Since the job is run over a shared network
file system, all standard input/output is the same as if it was run locally. See
Figure 1.

3.2 Decentralized System

The second system we implement is completely decentralized. All hosts in the
system run daemon processes that periodically broadcast state and listen for
broadcasts. In other words this is a Peer To Peer (P2P) system. Clients talk to
local daemons using purely local inter-process communication.

Communication amongst daemons is asynchronous. Daemons broadcast sys-
tem state periodically over UDP. A thread in each daemon listens for these
broadcasts and keeps track of hosts in a specialized data structure.

We also implement a load balancing algorithm with the decentralized system.
The daemons keep track of percent CPU usage, as well as total and available

Client/Host Client/Host Client
A

Central Server

Figure 1: Figure of a simplified centralized system. (1) Hosts A and B register
with the server. (2) Client C requests a host from the central server. (3) The
server sends a host’s IP address to the requesting client. (4) The client executes
its job remotely using ssh and the host’s IP address. (5)The client receives the
host’s return.

memory sizes. Individual daemons can prioritize these variables as they wish,
the load balancing is done purely locally on each daemon.

The daemon maintains a fixed size table of hosts. When a host needs to be
added but the table is full, another host needs to be replaced. The daemon uses
a least-recently-updated host replacement policy.

Once again we rely on ssh and a shared network file system for secure remote
execution. Once a client application receives a host from the daemon it sshes
to that machine to execute the given code. We have two small programs for
interfacing with the daemon. One of these programs is written in C and the
other is a shell script. They write a request to an appropriately named pipe
and read a host from another named pipe. A thread in the daemon listens to
these pipes and returns hosts upon request. See Figure 2 for a description of
decentralized system’s operation.

3.2.1 Super Queue

As previously stated, each daemon maintains a copy of global state. As such,
these daemons need to simultaneously order hosts by the time they have been
last updated and by their load. Instead of implementing this functionality using

Figure 2: Figure of a simplified decentralized system. (1) Daemon on peer A
broadcasts its cpu and memory state to its neighbors. (2) Daemon on peer B,
having updated its superQ, determines that Peer A should be the host for the
next remote execution. Daemon replies to the requesting process with peer A’s
address. (3) Peer B connects to Peer A using ssh and executes its job.

two separate data structures, we superimpose a priority queue and a FIFO queue
on each other. We call the resulting data structure a Super Queue (SQ).

Nodes are placed on a fixed size table in no particular order. These nodes
contain two separate sets of pointers, each set implements two separate doubly
linked lists. One of these doubly linked lists implements a FIFO queue, the
other a priority queue. We chose a doubly linked list because it allows very
quick node adding and removal operations. Given a moderately sized group of
workstations, a high number of broadcast messages will be going out over the
network. A doubly linked list minimizes the load induced by such high turnover.
See Figure 3.

4 Experiments

Our main purpose in testing is to establish a basis for comparison between
the two systems. We compared the performance of the two systems in several
aspects.

1. Server response time:
In this experiment we load a fixed number of hosts on the centralized and

5

FIFO Queue Priority Queue

Time stamp: 10:20

Load: 20%
Time stamp: 10:30 Head

Load: 10%
Tail < Time stamp: 10:50

Load: 85%

Time stamp: 10:00 Tail
Head ™\ " Load: 40%

Figure 3: Super Queue structure.

decentralized systems and compare their performance when swamped with
a high number of requests. For the centralized system, we also observe
the effects of placing the server on a different subnet than the client.

. Distributing jobs to homogeneous hosts:

Here we test sending out varying numbers of CPU bound jobs to hosts
using the two different systems. The hosts in these systems are very
similar. This is a basic measure of the effectiveness of the system in
distributing execution in order to minimize execution time.

. Distributing jobs to heteregeneous hosts:

This is the same as distributing jobs to homogeneous hosts except that
this time we place CPU bound loads on half of the nodes. The idea here
is to simulate the effect of load heterogeneity. Since our decentralized
solution includes a simple load balancing mechanism, this will also show
us if it has any significant effect.

Results and Discussion

In our regular lab environment the decentralized system performed slightly
worse than the centralized system. We believe this is primarily due to the small
size of our lab environment. However, the decentralized system’s advantages in
load balancing and response time could be observed in simulated environments.
This leads us to believe that the decentralized system needs to be thoroughly
examined using a larger scale network.

5.1 Server and Daemon Response

When the centralized server and client are in the same subnet (the Computer
Science subnet in this case) response time for the P2P daemon is very close to
the response time for the centralized server (Figure 4). The network overhead
in the centralized system is not observable. There is no strong trend showing
either system responding faster.

However, when we placed the centralized server on a different subnet (the
SCCS subnet in this case) the daemon performed observably better than the
centralized server. This suggests that with larger scale systems network over-
head will be a bigger issue. (Figure 4.)

We run all our experiments using shell scripts and cron. It is very likely
that shell script overhead makes subtle performance differences between the two
applications unnoticeable. In one instance, when we switched from using a shell
script to using a C program to interface with the daemon, our response time
was reduced by a factor of four. In any case, we need to test these applications
on a much larger system to effectively observe the differences in the scalability
of each.

5.2 Homogeneous Distribution

In order to judge the actual performance of our systems we tested how well
they performed in distributing the execution of a given set of jobs. In each
case 16 hosts are registered on the system. The client workstation seeding the
jobs sends out jobs in powers of 2 up to 128. The total time for each batch is
recorded.

Data suggests (Figure 5.) that the centralized solution actually performs
(and scales) better than the decentralized solution in this case. Given the so-
phistication and load balancing capabilities of the decentralized solution, this
is unexpected. As previously stated we believe this is because of the particular
character of our lab environment.

5.3 Heterogeneous Distribution

The two systems perform very similarly in a heterogeneous environment (Figure
6). The decentralized system performs better given a smaller number of hosts.
The daemon for the decentralized system marks a host as having full load once
it assigns a job to it. This is to ensure that jobs are distributed as much as
possible while still being sent to the least loaded hosts. So once a daemon sends
out jobs to all known hosts, it will simply distribute jobs in a round robin fashion
until it receives new state information about hosts.

When swamped, the daemon will quickly mark many of its nodes as having
full load. If the number of requests sent is less than the number of known
hosts, the daemon will adhere to its least-loaded-first policy. However, when the
number of requests exceeds the number of known hosts, the daemon will quickly
mark all hosts as having full load. As such, it can only use load state information

Server response times
4 T T

T T
Centralized, different subnet
Centralized, sarme subnet

Distributed --------
35 F

25

Time (s)

0 1 1 1 1
0 500 1000 1500 2000 2500

Number of requests

Figure 4: Server response graph.

if it receives a broadcast right in between the requests. Daemons broadcast every
second, so a daemon will be able to make intermittent informed decisions when
swamped. As such, the load balancing algorithm works best when requests come
in small bursts. It still provides a smaller advantage otherwise.

5.4 Homogeneous vs Heterogeneous Performance

Heterogeneity impacts the centralized and decentralized systems differently.
Both systems become slower due to half of the nodes becoming heavily loaded,
however the impact on the decentralized system is considerably less than the
centralized system. We can see on Figure 7 that the centralized system is con-
sistently made slower by heterogeneity. This is as expected; the round robin
scheduling algorithm does not respond to load on certain nodes in any way.
On the other hand we can see in Figure 8 that the decentralized system, with
its load balancing algorithm, tolerates heterogeneity much more gracefully. The

Job Handling with Homogenous Hosts
55 T T T T

T T
Decentralized system ———

Centralized systf
50 B

Time (s)

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Number of jobs

Figure 5: Homogeneous response graph.

gap between the performance of the heteregeneous and homogeneous systems is
actually decreasing with the number of jobs seeded.

6 Conclusion

Given the small number of hosts we tested this system on, it is understandable
that we did not make considerable gains from a decentralized approach. On the
whole, our lab environment has a fast network and is generally homogeneous.
As the date suggests, the gains made from a decentralized solution are hard to
observe on such a system.

However, we can still see the advantages of our decentralized solution in the
simulated environments we created. The load balancing algorithm of our de-
centralized solution is clearly superior in tolerating heterogeneity. Furthermore,
once outside the immediate CS network, the costs of going over the network
make local host lookup more advantageous.

Job Handling with Heterogeneous Hosts
60 T T T T

T T
Decentralized system ———
Centralized system

50

30

Time (s)

20

10

0 | | | | | |

0 20 40 60 80 100 120
Number of jobs

Figure 6: Heterogeneous response graph.

The effectiveness of an application is constrained by the demands of the
environment. Even though our decentralized solution was more sophisticated
than our centralized solution on many counts, it was not well suited for such a
tame environment.

7 Future Work

For both systems, in a batch of 128 jobs with total execution time of around
50 seconds, time spent getting hosts accounted for around 0.3 seconds. This
suggests that more time can be spent trying to develop more elaborate load
balancing schemes. Profiling nodes in the system before or during execution is
a viable option that would further guide load balancing algorithms.

Another option is developing a more powerful remote execution system. ssh
is not the ideal tool for distributed execution. It provides functionality such as
transferring terminal i/o over the network, secure authentication, and encryp-

10

140

Job Handling with Homogenous Hosts
55 T T T

T T T
Centralized, heterogeneous hosts———
Centralized, homogeneous hosts

Time (s)

5 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Number of jobs

Figure 7: Heterogeneous response graph for our centralized solution.

tion. A remote execution mechanism tailored for distributed execution would
greatly streamline communication over the network. Such a system would also
free us from the requirement for a shared network file system, which is greatly
limiting.

8 Acknowledgements
We based our UDP broadcaster and listener code on Beej’s samples located

at http://www.ecst.csuchico.edu/ beej/guide/net_old/. We thank Beej for his
extremely helpful tutorial on network programming.

11

Job Handling with Homogenous Hosts
60 T T T

T T T
Decentrelized, homogeneous hosts
Decentrelized, heterogeneous hosts

50 -

40 -

Time (s)
w
o
T
1

20 -

10 -

0 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Number of jobs

Figure 8: Heterogeneous response graph for our decentralized solution.

References

[1] Michael Litzkow. Condor—a hunter of idle workstations. In Proceedings of
the 8th International Conference of Distributed Computing Systems, pages
104-111, 1988.

[2] Matt W. Mutka. An examination of strategies for estimating capacity to
share among private workstations. In SIGSMALL ’91: Proceedings of the
1991 ACM SIGSMALL/PC symposium on Small systems, pages 41-49, New
York, NY, USA, 1991. ACM Press.

[3] D. Nichols. Using idle workstations in a shared computing environment.
In SOSP ’87: Proceedings of the eleventh ACM Symposium on Operating
systems principles, pages 5—12, New York, NY, USA, 1987. ACM Press.

12

