
CS65: Midterm Report

Bronwyn Woods
Swarthmore College

500 College Ave
Swarthmore, PA 19081

bwoods1@cs.swarthmore.edu

Phil Katz
Swarthmore College

500 College Ave
Swarthmore, PA 19081

katz@cs.swarthmore.edu

Abstract

This paper describes an implementation
and extension of algorithms described
in Hafer and Weiss (1974) and Dé-
jean (1998) to perform morphological seg-
mentation. The algorithms were evaluated
with respect to a gold standard that was
hand-tagged by a native speaker specifi-
cally for this task. The results were in
line with expectations, as they paralleled
the results in the original papers, and some
novel extensions improved the results.

1 Introduction

This paper presents our implementation of algo-
rithms taken from studies in morphological segmen-
tation (Hafer and Weiss, 1974; Harris, 1955; Har-
ris, 1967). We implemented and extended the al-
gorithms on a 300,000 word corpus generated from
the Brown Corpus. We created a “Gold Standard”
to help evaluate the accuracy of our morphological
segmenters. We implemented some of the algorithm
presented in Déjean (1998), but did not fully dupli-
cate all of the results presented therein.

2 Methods

We implemented the algorithms using a combination
of Python and Perl. To begin, we pre-processed a
list of every word in the Brown Corpus and removed
every word that occurred only once, every word that
contained one or more capital letters, and every word
of length less than three letters. This significantly

reduced the percentage of invalid English words in
the corpus.

The algorithms that we implemented depended in
large part on the calculation of predecessor and suc-
cessor counts. The successor count of a sequence of
letters is the number of letters that follow the given
sequence in the corpus. We calculated the succes-
sor count for every possible prefix, up to complete
words, in the corpus. The predecessor count is the
same calculation, only beginning from the end of
the word and counting the letters than can precede
a substring. Another method discussed in Hafer and
Weiss (1974) that we implemented depended on the
calculation of entropy for each prefix and suffix in
the corpus. Entropy is an information theoretic mea-
sure that is calculated based upon the distribution
of possible successors or predecessors. For the ex-
act calculation of entropy that we implemented, see
Hafer and Weiss (1974).

Hafer and Weiss (1974). describe fifteen algo-
rithms that they employ to segment morphemes us-
ing the predecessor and successor counts, and en-
tropy scores, discussed above. We implemented
these algorithms as well as a few more with modi-
fications that improved results on our data. The al-
gorithms generally consisted of creating predeces-
sor and successor score vectors for each word in the
test corpus, and making cuts based on certain fea-
tures. For example, a cut could be made if both
predecessor and successor scores were over a cer-
tain threshold, or if the sum of the two was over a
threshold. Other algorithms considered whether the
predecessor or successor was a complete word, and
made cuts accordingly. Some of the algorithms also



took into account whether the predecessor or suc-
cessor score was at a “peak or plateau”, namely if it
was greater than or equal to the surrounding scores.
The specifics of each algorithm will be explained in
detail in the results section.

We made three major modifications to the algo-
rithms. First, we defined a “peak or plateau” as hav-
ing successor or predecessor counts not only greater
than or equal to the surrounding values but also
greater than one. This helped eliminate incorrect
cuts in long words where sparse data produced a
“plateau” of ones for long sequences at the begin-
ning or end of the word. Second, we optimized the
threshold values for each algorithm by exhaustive
testing. This made consistent improvements to our
results across nearly all algorithms. Finally, in order
to correct mistakes where our algorithm segmented
two one-letter morphemes at the end of a word, such
as “segment-e-d”, we explicitly checked for this case
and removed the less probable cut.

After implementing these algorithms, we seg-
mented the entire corpus using our best segmenter
and used these splits to find the most frequent mor-
phemes. Our method was based on ideas presented
in Déjean (1998). We first generated a list of mor-
phemes with counts higher than a certain threshold.
For each morpheme, we checked if it was a substring
of another morpheme on the list. If the count of the
longer morpheme was more than three times that of
the smaller, we removed the smaller from the list.
Although we did not use this list to segment addi-
tional morphemes, it seems likely that we could do
so, as the list corresponds to linguistic intution about
English suffixes.

3 Results

The following is a detailed account of the algo-
rithms that we implemented. For each algorithm, we
calculated precision (number of correct cuts made/
number of cuts made), recall (number of correct
cuts made/ total number of correct cuts), and F-
Measure (2*Precision*Recall / Precision+Recall).
These scores were calculated with respect to a gold
standard of approximately 900 words, segmented by
hand by a native English speaker. Experimental re-
sults are summarized in Table 1. The following are
details of the implementation of each algorithm.

1: Successor count reaches cutoff. Cuts are made
whenever the successor count of a substring
surpasses a given cutoff. This algorithm is not
very effective; the only way to get even a rea-
sonable F-Measure is to set the cutoff so low
that the recall is high, because the algorithm
makes excessive cuts.

2: Successor and predecessor counts reach cutoffs.
Cuts are made whenever the successor and pre-
decessor counts surpass their respective cutoffs.
This algorithm is an improvement over (1), but
suffers from similar drawbacks.

3: Successor plus predecessor counts reaches cut-
off. Cuts are made whenever the sum of the
successor and predecessor counts surpasses a
given cutoff. This algorithm is much more ef-
fective, as it makes cuts when either the prede-
cessor or successor count is high enough, or if
both are moderately high, combining the best
elements of the previous two algorithms. This
algorithm gains greater precision without sac-
rificing recall. This algorithm benefited from
the use of entropy scores rather than successor
and predecessor counts, with the reuslts listed
as (3a).

4: Prefix is a complete word. Cuts are made when-
ever the substring up to that point is a word
found in the corpus. This algorithm identifies
certain cuts, like plural nouns, extremely well,
but is oblivious to almost all prefixes and to any
irregular spelling changes.

5: Suffix is a complete word. Cuts are made when-
ever the substring following that point is a word
found in the corpus. This algorithm is excel-
lent at prefix cuts, but loses nearly all verb end-
ings, plural nouns, and other short, non-word
suffixes.

6: Prefix is a complete word or predecessor count
reaches cutoff. Cuts are made whenever the
substring up to that point is a word found in
the corpus, or when the predecessor count sur-
passes a given cutoff. This algorithm attempts
to supplement (4) by also finding prefixes. This
is an improvement over (4), as recall increases
by 26% without sacrificing any precision.



Method Precision Recall F − Measure

1 0.19 0.74 0.30
2 0.26 0.67 0.38
3 0.41 0.67 0.51

3a 0.45 0.73 0.56
4 0.40 0.64 0.49
5 0.38 0.44 0.41
6 0.40 0.81 0.53
7 0.27 0.70 0.39
8 0.39 0.51 0.44

8b 0.39 0.51 0.44
9 0.36 0.73 0.48

9b 0.35 0.78 0.48
10 0.36 0.73 0.48

10a 0.28 0.89 0.43
11 0.70 0.57 0.63

11a 0.81 0.54 0.65
11c 0.56 0.59 0.58
11d 0.77 0.56 0.65

Table 1: Experimental Results. (a) indicates algo-
rithms using entropy, (b) indicates algorithms where
we did not allow peaks at 1, (c) indicates an algo-
rithm using the threshold values listed in Hafer and
Weiss (1974), (d) indicates an algorithm that disal-
lows multiple one-letter suffixes

7: Successor count at peak/plateau. Cuts are made
whenever the successor count is greater than
or equal to the successor counts on either side.
This algorithm is an improvement over (1), but
suffers from low precision.

8: Successor and predecessor at peak/plateau. Cuts
are made whenever the successor and predeces-
sor counts are both at a peak/plateau. This al-
gorithm appears to make errors on sparse data,
when there are sequences of ones in the succes-
sor or predecessor counts. However, when we
tried to correct for that by not allowing a one to
be considered a peak/plateau (results listed as
8b), it made no difference.

9: Successor plus predecessor at peak/plateau.
Cuts are made whenever the sum of the succes-
sor and predecessor counts is at a peak/plateau.
This algorithm also appears to make errors on
sparse data, when there are sequences of ones
in the successor or predecessor counts. How-
ever, when we tried to correct for that by not
allowing a one to be considered a peak/plateau
(results listed as 9b), it made a trivial differ-
ence.

10: Prefix is a complete word or predecessor at
peak/plateau. Cuts are made whenever the
substring up to that point is a word found in
the corpus or the predecessor count is at a
peak/plateau. This algorithm adds very little
new information as compared to (9). When this
algorithm is run with entropy values instead of
predecessor scores, it gains recall at the price
of a significant loss of precision (10a).

11: Hybrid of (2) and (6). This algorithm com-
bines earlier algorithms in an intelligent way.
Cuts are made either when the prefix is a com-
plete word and the predecessor count is above
a threshold, or when both predecessor and suc-
cessor counts are above thresholds. We opti-
mized the thresholds for our data, which gave
a noticable improvement over (11c), which
used the threshold values listed in Hafer and
Weiss (1974). Finally (11d), we checked for
consecutive one-letter suffixes at the end of
a word, and eliminated the less probable cut.
This resulted in one of our best results, along
with (11a), which replaced predecessor and
successor counts with entropy scores.

We used algorithm (11d) to segment the entire cor-
pus and found the most frequent morphemes. We
eliminated some of the most freqent morphemes us-
ing a method similar to Déjean (1998). First, we
eliminated any morpheme that occured less than 500
times in the segmented corpus. We then checked
each morpheme to see if it was a substring of another
morpheme on the list which had a frequency that
was three times greater. The resulting morphemes
are shown in Table 2.



Morpheme Frequency

s 19962
ing 7253
ed 7126
er 4853
t 3367

ly 2833
al 1957
on 1391

ness 950
es 931
en 736
or 731
ic 674

able 646
ist 588
an 556

ment 510

Table 2: Most frequent morphemes in the corpus
segmented by (11d)

4 Discussion & Conclusions

Overall our experiments were very successful. It is
difficult to measure the recall and precision of exper-
iments such as these because those values are com-
pletely dependent on the specific gold standard used.
In fact, the task of morphological segmentation is a
difficult one to measure quantitatively because it re-
lies completely on the gold standard, and the gold
standard is, by definition, subjective. This does not
mean that the task is not worth attempting, but it
means that any precision and recall numbers should
be considered at least somewhat subjective. For ex-
ample, our best segmenter would segment the word
“formatting” as format-t-ing, while our gold stan-
dard says format-ting. A solid linguistic case could
be made for either segmentation being correct; how-
ever, our experiment marks the prior as incorrect and
the latter as correct.

The list of most frequent morphemes that our al-
gorithm generates is promising. It seems to corre-
spond with linguistic intuition about English, rank-
ing morphemes such as “s”, “ing” and ”ed” at the
top. Although we did not use this information in
any of our segmenters, it would be the first step in
implementing algorithms such as that described in

Déjean (1998). Conceivably, a reliable list of fre-
quent morphemes could also be used to modify and
improve algorithms that use prececessor and succes-
sor counts or entropy. This is a direction for further
investigation.

In general, we attempted to take the algorithms
described in Hafer and Weiss (1974) and analyze a
small sample of the results by hand. This is what
inspired the improvements that we made to the ba-
sic algorithms, some of which were successful, and
others of which had little effect. In the end, our
improved algorithms were able to do slightly better
than the best of their algorithms, when measured on
our gold standard.

References

Hervé Déjean. 1998. Morphemes as necessary concept
for structures discovery from untagged corpora. In
Proceedings of the ACL-98 Workshop on New Meth-
ods in Language Processing and Computational Nat-
ural Language Learning.

Margaret A. Hafer and Stephen F. Weiss. 1974. Word
segmentation by letter success varieties.Information
Storage and Retrieval, 10:371–385.

Zellig Harris. 1955. From phoneme to morpheme.Lan-
guage, 31:190–222.

Zellig Harris. 1967. Morpheme boundaries within
words: Report on a computer test. InTransforma-
tions and Discourse Analysis Papers. Department of
Linguistics, University of Pennsylvania.


