
Shapefile Overlay Using a Doubly-Connected Edge List

Phil Katz and Stephen St.Vincent
Swarthmore College

500 College Ave.
Swarthmore, PA 19081

[pkatz1, sstvinc2]@swarthmore.edu

Abstract

We present a method for finding the over-
lays of a set of polygons that uses the
doubly-connected edge list structure. We
first detect all intersections between poly-
gons using a brute-force method. We
then build the doubly-connected edge list,
maintaining information about the origi-
nal polygons, from which we can easily
perform shapefile overlay operations: in-
tersection, difference, and union.

Our algorithm runs inO(n2) time. Our
doubly-connected edge list construction
algorithm runs in O(n log(n)) time,
with the bottleneck being the brute-force
O(n2) line segment intersection. Once
that list is built, any given overlay oper-
ation isO(n).

1 Introduction

Natural disasters such as floods often occur
swiftly and without warning. It is imperative, there-
fore, that political entities such as counties and states
be adequately prepared to deal with such disasters.
Often, this level of preparation varies directly with
the amount of funding recieved, which is in and of
itself a function of the percieved threat in that region.
Determining the extent to which region is in danger
of flooding is difficult to assess anecdotally. How-
ever, by combining geographical data such as wa-
tershed layouts with political boundary data, we can

(a) (b)

(c) (d)

Figure 1: Examples of shapefile overlays. (a) The
original polygons in setS. Here, we have two over-
lapping squares at different orientations. (b) The
intersection of the two squares, represented by the
green region. (c) The difference of the two poly-
gons, shown by the blue and yellow regions. (d) The
union of the two polygons. Note that the interior
segments are now gone.

use shapefile1 overlays to assign an unbiased value
to the level of danger to any region. This information

1A shapefile is a common file format for exchanging poly-
gon data that does not maintain topology



can then assist in appropriate resource allocation, as
well as computation of flood insurance rates.

Given a set of polygonsS, how can one efficiently
determine the new set of polygonsP that is defined
by the overlay of the polygons inS? Polygons in
P can include the intersection, union, or difference
of members ofS. Figure 1 shows examples of these
types of overlays.

To solve the problem of shapefile overlay, we will
use methods from (de Berg et al., 1998) to build a
data structure called adoubly-connected edge list
that will allow us to calculate overlays efficiently.
The more general problem of shapefile overlay has
special cases which would be unusual in settings
such as the one described above, such as polygons
with holes in them. Still, we consider these special
cases to make our algorithm as general as possible.

In section 3, we present our methods for build-
ing the doubly-connected edge list and calculating
shapefile overlays. In section 4, we discuss the run-
time analysis of our algorithms. In section 5, we
present results applying our algorithms to simple
test-case polygons as well as to real geographical
data. Finally, in section 6, we discuss the implica-
tions of our results.
2 Related Work

When building topological representations, it is usu-
ally the case that we wish to restrict the topologies
to follow a specific set of constraints. (Hoel et al.,
1994) describe such a system. Their topologies have
certain consistency requirements, and as such must
follow an explicit set of rules, such as the following:

• Interiors of polygons in a feature class must not
overlap

• Polygons must not have voids within them-
selves

• Polygons of one feature class must share all of
their area with polygons in another feature class

Shapefile overlay is necessary to enforce these
rules on large sets of polygons. Without an effective
shapefile overlay algorithm, the work of (Hoel et al.,
1994) could not be implemented in an efficient, ro-
bust manner.

Figure 2: Doubly-connected edge list for two poly-
gons. Half-edgee1 has anext pointer toe2 and
a previous pointer toe3. The current face of all
three of these isF1. The twin ofe2 is e4, whose cur-
rent face isF2. The twins ofe1 ande3 haveNull
as their current face.

3 Methods

To find the overlays of multiple polygons, we
must construct the doubly-connected edge list. Be-
fore we can do that, we need to know where the seg-
ments of each polygon intersect the segments of the
other polygons in the set.
3.1 Line intersection calculations

This is by far the most straightforward step in cal-
culating shapefile overlays. Because the runtime
of brute-force algorithms is not significantly slower
than more complex algorithms for the data sets we
are considering (Andrews et al., 1994), it does not
cost us significantly to implement a brute-force al-
gorithm. For each segment of a polygon, we check
explicitly whether it intersects any segment of any
other polygon, and keep a list of all intersection
points that occur on that segment. This allows us to
easily create all of the subsegments for the doubly-
connected edge list, as well as to keep track of which
of the original polygons a segment was associated
with.

3.2 The doubly-connected edge list

A doubly-connected edge list (de Berg et al., 1998)
stores all of the information regarding the set of
polygons that is necessary to calculate the shape-
file overlays. The basic setup of a doubly-connected



edge list begins with the edges. The edges of each
polygon are stored as directedhalf-edges that go
around the polygon in clockwise order such that the
face that is bound by the half-edges is always to the
right of each half-edge (see figure 2).

Each half-edge stores the following information:

• Starting point

• Ending point

• The ID of the face from which the half-edge
originated

• A pointer to the next half-edge on the current
face

• A pointer to the previous half-edge on the cur-
rent face

• A pointer to its twin half-edge

As we build the half-edges that are on the interi-
ors of the original polygons, we can build theirtwin
edges. Twin edges are the same as the original half-
edge, but with its orientation reversed and its face set
to null. So, for half-edgee, twin(twin(e))=e.

For each new half-edge that we add, we update
a dictionary,vDict, that contains all of the neces-
sary edges. ThevDict is a hash table keyed on ver-
tices and contains a list of the half-edges that start at
that vertex. This is critical for building the next- and
previous-edge pointers.

3.2.1 Creating next- and previous-pointers

Determining the next and previous pointers for
each half-edge is non-trivial. For the next pointer of
each half-edgee, we must find the half-edges whose
starting point is the same as the ending point ofe.
Then, we must determine which of these half-edges
makes the largest clockwise angle withe, and set the
next-pointer ofe to that half-edge.

Now that thevDict has been updated for each
half-edge, this task becomes much easier. Using fig-
ure 3 as an example, let us attempt to find the next-
pointer of the half-edgeAX . By treating each half-
edge as a vector originating atX , we can find the
angle between the half-edgeAX and all the other
half-edges by using the cross product and the dot
product:

Figure 3: Finding the next-pointer. Here, we are try-
ing to find the appropriate half-edge for the next-
pointer of half-edgeAX. θ measures the angles be-
tweenAX and the other half-edges in the image.
We choose the half-edge with the largest value ofθ,
which in this case isXB.

sin (θ) =

∣

∣

∣

∣

∣

∣
AX × BX

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
AX

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
BX

∣

∣

∣

∣

∣

∣

cos (θ) =
AX · BX

∣

∣

∣

∣

∣

∣
AX

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
BX

∣

∣

∣

∣

∣

∣

After computingcos(θ) andsin(θ), we can calcu-
late the true angleθ (where0 ≤ θ ≤ 2π) between
AX and each of the other three half-edges in the fig-
ure. The candidate half-edge with the largest value
of θ can now be set as the next-pointer. To com-
plete the example, the next-pointer ofAX would be
XB, and the previous-pointer ofXB can be set to
AX . After walking completely around a face in this
fashion, all of the next-and previous-pointers for the
half-edges that bound that face will have been set, so
we do not need to calculate the previous pointers ex-
plicitly.
3.3 Computing the overlays

Now that we have walked along the half-edges of
every face, we have a list for each new face of all of
the original faces from which it was derived. From
here, we can easily specify an overlay by selecting
the new faces that meet the criteria of the overlay in
question.



3.4 Non-intersecting overlays

Figure 4: Line-Sweep Algorithm. The dotted line is
sweeping rightward. Right before reaching the cur-
rent point, there should be four edges (A,B,C,E) in
the data structure, and upon reaching this point, two
(B,C) should be removed.

Not every overlay of two polygons will involve
the inteserction of their segments. Consider for in-
stance the overlay of the Sahara Desert with Cum-
berland County, Pennsylvania. The intersection of
these two polygons should be null, given that the
two polygons are clearly not spatially coincident and
have no intersections.

But we cannot simply say that a lack of segment
intersections implies a lack of spatial coincidence.
Consider now the overlay of Nebraska with the en-
tire United States. While it is not apparent why one
would choose to perform this overlay, it should be
clear that this is an example of an overlay that has
no segment intersections but does have some over-
lap.

We solve this problem by using a line-sweep al-
gorithm (de Berg et al., 1998). Figure 4 shows
two polygons, with one completely interior to the
other. Once our line-intersection algorithm deter-
mines that there are no segment intersections be-
tween these two polygons, we can move into our
line-sweep algorithm. We sort the vertices in order
of their x-coordinate; we also store the face associ-
ated with the first vertex in the sorted list. We then
step through the sorted vertices in order while main-
taining a list of edges that currently intersect the

sweep line. When a vertex is encountered that has
an associated face that differs from the face of the
first point, we can stop our line-sweep. If the new
vertex is below an odd number of segments, then
we know that the new face is completely interior to
the other; otherwise, it must be completely exterior.
This method is robust for concave polygons.

3.5 Polygons with holes

Figure 5: Polygons with holes. The blue polygon
has a hole in its center, which is not filled in. Where
the yellow polygon intersects with the hole, it re-
mains unchanged.

Consider the nations of South Africa and Lesotho.
Lesotho is an independent nation completely inte-
rior to the borders of South Africa. As such, South
Africa may be treated as a polygon with a hole in it.
If we worked for the South African government and
needed to determine overlays, we would surely want
to take Lesotho into account.

We can handle this by allowing each face to have
a pointer to itsinner edges. These inner edges will
form a closed polygon. The outer half-edges of this
interior polygon (which run counter-clockwise) have
the same face as the original polygon, while the in-
ner half-edges (which run clockwise) have their face
set to null. From here, we can perform our normal
shapefile overlay process, starting with segment-
intersection.

4 Runtime analysis

Our brute-force polygon intersection calculation is
O(n2). For each line segment, we test all of the
line segments in the other polygon for intersection.
Given that we do not check segments in the same



polygon, this upper bound ofO(n2) can never be
reached, but is still the appropriate theoretical upper
bound. This assumes that the polygons are simple.

Our line-sweep algorithm isO(n log(n)). For
each of then vertices, the operations we need to
perform (search, insertion, and deletion) can be im-
plemented (with a binary tree, for example) to re-
quire O(log(n)) operations to maintain the line-
sweep data structure.

Once we have the doubly-connected edge list
built, we will havek edges, stemming from then
original edges. To build the overlay faces, we need
only go through each of thek edges once, removing
them from the list of all edges once we assign them
to a face. So the overlay algorithm itself (assuming
that the doubly-connected edge list has already been
built) is O(k). In the worst case,k is O(n2), but
in most real-world polygon intersections,k will be
O(n).

5 Results

Figure 6: Example of polygon intersection. The blue
area indicates areas that are only covered by the con-
vex polygon (rotated square). The yellow areas were
only covered by the concave polygon. The green
area represents the intersection of the two polygons.
The white circles show points of intersection be-
tween the segments of the two polygons.

Figure 6 is a sample run of our intersection al-
gorithm on two hand-made polygons. The image
was created using the Python graphics library from
(Zelle, 2004). The green polygon in the center
shows the intersection polygon. The blue and yel-
low polygons combine to define the difference of
the polygons. The entire shaded area is the union

Figure 7: Interior polygons. This image shows the
effects of scaling the concave polygon in figure 6
so that it fits completely inside the concave poly-
gon. No area has maintained the yellow coloring
from above.

of the two polygons. The small white circles show
the points of intersection between the two polygons.

Figure 7 shows the intersection of two polygons
where one of the polygons is completely interior to
the other. Despite the lack of intersection points, our
algorithm has handled this flawlessly.

Figure 8: Intersection of Cumberland County with
watershed 2050305. The red region is the watershed
only, the blue region is Cumberland County only,
and the purple region is the intersection of the two.

Figure 8 shows the intersection of Cumberland
County, Pennsylvania, with watershed 2050305
(USGS Hydrological Unit Code). Figure 9 shows
Cumberland County intersected with watershed
2050306.



Polygons Time (ms) Points Intersect time (ms) DE list time (ms) Overlay time (ms)

CC, WS5 8126 693 6132 238 1642
CC, WS6 7950 688 6000 252 1556

Table 1: Benchmarking on sample county and watershed data. The Cumberland County (CC) polygon had
284 points; the watershed 2050305 (WS5) polygon had 409 points; the watershed 2050306 (WS6) polygon
had 404 points.

.

Figure 9: Intersection of Cumberland County with
watershed 2050306. The yellow region is the water-
shed only, the blue regions are Cumberland County
only, and the green region is the intersection of the
two.

Table 1 shows benchmarking figures for these two
runs. The tests were run on an Intel(R) Pentium(R)
4 running at 3.00 GHz with 156 MB of RAM.

6 Discussion

The goal of this project was to implement shapefile
overlay in an efficient manner. In order to accom-
plish this goal, we implemented a doubly-connected
edge list that allowed our algorithms to efficiently
compute overlays. With the exception of our brute-
force line segment intersection, all of our algorithms
are relatively computationally inexpensive. Table
1 shows that the line segment intersection is the
clear bottleneck. It is possible to implement faster
line segment intersection algorithms, but that is not
within the scope of this project.

Our algorithm works successfully for most com-
plex cases, including concave polygons, polygons
inside other polygons, polygons with holes, and up

to three polygons, as in figure 10. Our algorithm
can not handle the case of intersecting two poly-
gons that share an edge. This case is pathological for
line intersection as well as for constructing a doubly-
connected edge list.

Figure 10: Intersection of Three Polygons. This
image shows that our algorithm can be extended to
three polygons.

7 Conclusions

Shapefile overlay is a fundamental building block of
computational geometry. It is imperative to the field
that shapefile overlay can be computed quickly and
correctly. Although we do not introduce any revo-
lutionary methods to accomplish this task, we show
that it can be performed with fairly straightforward
algorithms on simple data structures.

References

D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Den-
ham, J. Harrison, and C. Zhu. 1994. Further compari-
son of algorithms for geometric intersection problems.
In 6th International Symposium on Spatial Data Han-
dling.

Mark de Berg, Mark van Kreveld, Mark Overmars, and
Otfried Schwarzkopf. 1998.Computation Geometry:
Algorithms and Applications. Springer.



E. Hoel, S. Menon, and S. Morehouse. 1994. Build-
ing a robust relational implementation of topology. In
8th International Symposium on Spatial and Temporal
Databases.

John Zelle. 2004.Python Programming: An Introduc-
tion to Computer Science. Franklin, Beedle, & Asso-
ciates.


