
SWAT-MP: Supervised WSD and Affective Text Tagging

Phil Katz
Department of Computer Science

Swarthmore College
Swarthmore, PA

katz@cs.swarthmore.edu

Matt Singleton
Department of Computer Science

Swarthmore College
Swarthmore, PA

msingle1@sccs.swarthmore.edu

Abstract

In this paper, we describe our Word Sense
Disambiguation system for SEMEVAL-1
task 5: Multilingual Chinese-English Lex-
ical Sample Task. We implement meth-
ods based on Bayesian calculations, cosine
comparison of word-frequency vectors, de-
cision lists, and Latent Semantic Analysis.
We also implement a simple classifier com-
bination system that combines these classi-
fiers into one WSD module. The results of
the SEMEVAL-1 competition are discussed
briefly.

1 Introduction

In this section, we will discuss a word sense dis-
ambiguation system that implements four different
context-based classifiers: a Naı̈ve Bayesian classi-
fier, a Decision List classifier, and a Nearest Neigh-
bor Cosine classifier. The system combines the clas-
sifications from these four classifiers into a single
guess as to the sense of a word. Our system is an
extension of the system described in (Wicentowski
et al., 2004).

The task, a multilingual Chinese-English lexi-
cal sample task, consists of instances of ambiguous
Chinese words surrounded by context, sense-tagged
with the correct English translation. The instances
are divided into training data, for which the correct
translation is provided, and test data, for which the
task is to provide the correct translation.

In section 2 we present the implementation of
each classifier and of the classifier combination sys-

tem. In section 3 we present the results from
SEMEVAL-1.

2 Methods

2.1 The Classifiers

As discussed previously, our system consists of four
unique classifiers. All of the classifiers require the
creation of aterm-document matrix, which contains
a column for each training instance of an ambiguous
word, and a row for each feature that can occur in
the context of an ambiguous word

2.1.1 Näıve Bayes

The Naı̈ve Bayes classifier is based on one of
the simplest, most fundamental probabilistic rules:
Bayes’ Theorem.

Pr(A|B) =
Pr(B|A) ∗ Pr(A)

Pr(B)

Given a term-document matrix, it is very straight-
forward to implement a Naı̈ve Bayes classifier. The
goal is to calculate, for a given contextB, the prob-
ability of a senseA occurring. It is simple to calcu-
late the global probability ofA in the training data,
and the probability ofB is 1. In order to calculate
Pr(B|A), we assume that

Pr(B|A) =
n

∑

i=1

Pr(Bi|A)

where there aren different featuresBi in context
B. Pr(Bi|A) can be calculated from the training data
as the frequency with whichBi occurs in the context
of senseA.

Feature Confidence Sense
Prev–Financial 99% Financial

Next–Shot 98% Basketball
WordBag-Bond 96% Financial
WordBag-Water 95% River

Figure 1: A small piece of an example Decision List.

The classifier uses a basic probability equation to
calculate the similarity between an instance,A, and
a sense (from the training data),Bi:

Sim(A,Bi) = P (Bi) ∗ P (A|Bi)

The classifier returns the sense with the highest
similarity to the test data.

2.1.2 Decision List

The Decision List classifier constructs a decision
list during training and applies that Decision List
during testing. A Decision List is a data structure
that can best be visualized as a series of questions
asked of the input (Does the input have this fea-
ture?). If the answer is yes, then there is an asso-
ciated classification with that node that is selected;
if the answer is no, it moves on to the next node.

The Decision List is created by counting the oc-
curances of each feature in the training set and the
occurances of each feature in the context of a given
sense. If a feature occurs only in the context of
words with the “Financial” sense, the Decision List
would have 100% confidence that the feature indi-
cates a financial context. The Decision List is sorted
by confidence so that it checks for the features in
which it is most confident before the lower confi-
dence features.

Figure 1 shows an example Decision List for
bank; if the context of the test set does not have
any of the features in the Decision List, the classi-
fier simply chooses the most common sense with a
confidence of the probability of that sense.

2.1.3 Nearest Neighbor Cosine

The Nearest Neighbor Cosine classifier uses the
context vectors created for each sense during train-
ing, and for the ambiguous instance during testing.
The cosines between the ambiguous vector and each
of the sense vectors are calculated, and the sense that

is the “nearest” (largest cosine) is selected by the
classifier. A more intricate method of cosine com-
parison, based upon Latent Semantic Analysis, is the
fourth and final classifier.

2.1.4 Latent Semantic Analysis

In the process of Latent Semantic Analysis, Sin-
gular Value Decomposition (SVD) is used to reduce
a term-document (or term-term) matrix of term oc-
curances,W , into three matrices: a left matrix,U ,
a singular value, or eigenvalue, matrix of eignenval-
ues down the diagonal,S, and a right matrix,V . The
matrix W is constructed with terms as the row di-
mension, and documents as the column dimension,
representing the count of each term in each particu-
lar document. Once SVD is implemented, ann by
m W matrix will be broken down into ann by m

U matrix, anm by m S matrix, and anm by m V

matrix.
Once the decomposition process is completed,

the matrices are organized by magnitude of high-
est eigenvalues. Then, we dropped low magnitude
dimensions of the decomposed matrices. Choosing
which dimension (vectors) to drop was an empirical
decision based off of determining which dimension
magnitude maximized the success rate for a particu-
lar language. This process is described further in the
results section.

After the matrices have been dimensionally re-
duced, we are left with three matrices, each with dif-
ferent semantic meaning. The right matrix, V, can
be viewed as a “meaning” by document matrix, in
which each document has “counts” for the amount
of semantic meaning within. This set of vectors can
be used to disambiguate any future document. To
implement this method, we utilized the SVDLIBC
library. This package uses the Single-Vector Lanc-
zos method and quickly decomposed our large ma-
trices.

To disambiguate, the classifier willfold the tar-
geted document into the correct “meaning” space
such that a term vector of the disambiguation target
is transformed into a meaning vector. This process is
done by multiplying the test document vector byU

andS−1. Once this vector is transformed, it can be
compared with the “meaning”-document matrix us-
ing nearest neighbor cosine similarity to determine
to which document it is most similar. By reduc-

ing the term dimension into a “meaning” dimension,
we am hoping to remove the noise from the term-
document matrix such that the important factors in
disambiguation will stand out and improve the accu-
racy of our cosine similarity scores.

2.2 Classifier Combination

The classifier combination algorithm that we imple-
ment is based on a simple voting system. Each clas-
sifier returns a score for each sense: the Naı̈ve Bayes
classifier returns a probability, the cosine-based clas-
sifiers return a cosine distance, and the decision list
classifier returns the weight associated with the first
feature that sense has in common with the test in-
stance. The scores from each classifier are normal-
ized to the range [0,1], multiplied by a constant rep-
resenting the overall accuracy of that classifier (de-
termined empirically), and summed for each sense.
The combiner chooses the sense with the highest
summed score. We also implemented a simple vot-
ing system, where the sense that is chosen by the
most classifiers is the sense chosen by the combiner,
but found our combination algorithm to be more ac-
curate (in cross-validation).

2.3 Context Features

Our classifier combination system used a number of
features from the surrounding context of an ambigu-
ous word, including: unigrams, bigrams, trigrams,
and a simple weighting system on the ten surround-
ing words.

2.4 Additional Methods

There are three more significant computational
methods that were used to improve the performance
of the classifiers.

2.4.1 TF*IDF

TF*IDF (Term Frequency-Inverse Document Fre-
quency) is a method for adjusting the frequency of
words based on their importance to a document in a
corpus. TF*IDF, at a high level, decreases the value
of a word that occurs more times in a corpus, but
increases the value of a word that occur in less dif-
ferent documents. The equation used for TF*IDF is:

tfi · idfi =
ni

∑

j nj

· log

(

|D|

|D : tiǫD|

)

whereni is the number of occurances of a termti,
andD is the set of all training documents.

TF*IDF was used for the Nearest Neighbor Co-
sine classifier, in an attempt to minimize the noise
from words such asand that were extremely com-
mon, but common across all training instances.

2.4.2 Alpha Smoothing

Alpha smoothing is a technique that is used to at-
tempt to improve the information gained from low-
frequency words. We used alpha smoothing in the
Naı̈ve Bayes classifier and the Decision List clas-
sifier. To implement alpha smoothing, we added a
very small number to the frequency count of each
feature (and divided the final product by this alpha
value times the size of the feature set to maintain
accurate probabilities). This small number has al-
most no effect on more frequent words, but boosts
the score of less common, yet potentially equally in-
formative, words.

2.4.3 K-Nearest-Neighbor

One variant on nearest-neighbor cosine compari-
son that we implemented is K-nearest-neighbor co-
sine comparison. For this, instead of treating each
sense in the training data as one vector, we treat each
individual training instance as a seperate vector, and
find the k nearest training instances to the test in-
stance. We then choose the most frequent sense
among thosek instances. Ultimately, we found that
the inclusion of a K-nearest-neighbor classifier actu-
ally lowered our accuracy in cross validation so we
removed the K-nearest-neighbor classifier from our
final system.

3 Results

System Micro-average Macro-average
Rank1 .716578 .749236
Rank2 .712299 .746824
Rank3 .710160 .748761
SWAT-MP .657754 .692487
Rank5 .375401 .431243
Rank6 .336898 .395993

Figure 2: The results of the SEMEVAL-1 task 5,
annonymised

References

Richard Wicentowski, Emily Thomforde, and Adrian
Packel. 2004. The swarthmore collegesenseval-3
system. InProceedings of Senseval-3, Third Inter-
national Workshop on Evaluating Word Sense Disam-
biguation Systems.

