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ABSTRACT 

Finite element modeling methods were used to design models of three medieval 

vaulting technologies: an ideal quadripartite vault , ideal sexpartite vault, and vault from 

Beauvais Cathedral.  These models were loaded with their own self-weight and wind loads 

on their horizontal projection, corresponding to realistic scenarios at Beauvais, France.  

The outward thrusts that would be transmitted to the flying buttress system were as 

anticipated for all models.  Von Mises stresses were analyzed to qualitatively examine the 

stress distributions and structural efficiency of each model. 
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1 BACKGROUND AND INTRODUCTION 

Before launching into the background of this particular design project, it is 

necessary to discuss gothic architecture qualitatively to provide a foundation for the reader.  

Gothic architecture was largely determined by the theological need for stained glass in 

cathedrals.  While the details of the religious aspects are beyond the scope of this 

introduction, it is important to consider that 2-dimensional media initially determined 

cathedral architecture.  The pointed arch is the foundation of this architecture Figure 1.  

 

Arches commonly occur in other types of medieval architecture.  For example, the ribbed 

vaults that are the ultimate focus of this project are formed via the intersections of pointed 

arches Figure 2. 
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Medieval masons had two types of vault available to them in a new construction 

project: a quadripartite (four-part) vault or a sexpartite (six-part) vault Figure 2 and Figure 

3.  Neither vault was more economic or efficient to build; in fact, cathedral architectural 

decisions were based largely on trends in gothic architecture rather than realistic 

constraints.  During the high gothic period, which was clearly defined by the early 13th 

century, most cathedrals were built in the style of Chartres Cathedral (Cathedral of Notre-

Dame at Chartres) which was embodied as a codification of gothic trends.  After the 

construction of Chartres and the formulation of the Chartrian model, every cathedral 

excepting Bourges Cathedral followed the model to the smallest detail.  Since the model 

employed quadripartite vaults, it was a clear choice for medieval masons. 

 

 

Gothic structural systems rely heavily upon a complex system of flying buttresses.  

First and Second Generation Gothic structures featured thicker walls to better support the 

weight of the vaults and to resist wind loads.  Thinner walls became more desirable as 

cathedrals began to compete with each other for structural might and general pride.  As a 

result, the flying buttress system was born Figure 4. 
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The upper choir vaults exert both their own weight and reactions to various types of 

loading on the buttresses, which in turn transfer these loads to the massive piers of the 

exterior of the cathedral.  The horizontal outward thrust arches exhibit when loaded causes 

this load transmission.  Since vaults are based upon this gothic arch geometry, they 

transmit load similarly.  For this report, the structural function of the other architectural 

elements of the cross-section is superfluous. 

This report places particular significance on Beauvais Cathdral for two main 

reasons: it is both the tallest gothic monument and the feeblest Figure 5.  The original 

quadripartite choir vaults collapsed in 1284, a mere 12 years after their completion, leading 

architects and masters of the period to replace them with older and less-fashionable 

sexpartite vaults. 
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There are numerous theories speculating on this counter-intuitive shift in design.  

E. E.  Viollet-le-Duc in his Dictionnaire raissoné de l’architecture française and Jacques Heyman 

in his analysis of Beauvais Cathedral concur that the collapse of the vaults was a result of 

too-slender colonettes.  However, more recent scholarship indicates that this argument 

cannot be accepted on the basis that in repairing the cathedral, additional measures were 

taken to redesign the vaults in sexpartite form.  Had collapse been caused by inadequately 

designed colonettes, the only repairs necessary would be to the critical regions (Mark, 

1976).  Mark and Wolfe argue through research in photo-elastic modeling that wind loads 

on the intermediate buttresses provided enough force to generate cracking which in turn, 

resulted in collapse of the vaults. 

 If this is indeed true, the repairs made to the cathedral reflect this logic.  The 

master made certain to reduce horizontal loads transmitted to the intermediate buttresses, 

accomplished via the unusual switch to sexpartite vaults. Sexpartite vaults are significantly 

lighter than quadripartite vaults of the same area and would therefore reduce the 

horizontal shearing loads transmitted to the wall buttresses.  This being said, sexpartite 
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vaults also create approximately 50% more longitudinal thrust than quadripartite vaults 

and as a result, additional wall buttresses are necessary to support the transmitted loads 

(Mark and Taylor, 1982).  These additions also aided in reduction of wind loads on the 

clerestory, ultimately leading to lesser loads on the intermediate buttresses. 

 While this explains the perceived regression from quadripartite to sexpartite 

vaults, should sexpartite vaults be condemned as forever obsolete because of their 

prohibitively large thrusts?  Perhaps the medieval engineers did not exhaust the structural 

possibilities of six-part vaults and abandoned them prematurely in favor of heavy four-part 

vaults.  After all, Beauvais remains standing, albeit feebly, after 700 years in its current 

sexpartite form.  It is this notion that has inspired the research presented here. 
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2 ANSYS® 

 

2.1 Finite Element Analysis 

The finite element method, also referred to as the direct stiffness method, is the 

basis of analysis of plates and shells in structural software like ANSYS®.  As it can be 

applied to most types of structures, finite element methods are preferable in computer 

methods as they encompass a majority of scenarios and constraints.  Finite element analysis 

operates under the assumption that the analyzed structure, in this case, some form of a 

vault, can be divided into numerous basic scenarios.  Furthermore, it is assumed that these 

basic structural scenarios will superimpose to equate to the original structure.  Behavior is 

thus determined by examining smaller units and combining them to construct a larger 

solution. 

 Unlike the compatibility equation method, which utilizes unknown redundant 

forces and flexibility coefficients, the finite element method involves constructing 

equilibrium equations based upon unknown joint displacements and stiffness coefficients.  

The forces in a given member can thus be determined via force-displacement relationships.  

The equilibrium equations take the following form in matrix notation:  Equilibrium 

equations between elements relate the transfer of forces to adjacent elements in proportion 

to the element stiffness, size, and properties.  Internal stresses then superimpose to model 

the response of the structure under loading. 

 

2.2 ANSYS® Parametric Design Language 

 The ANSYS® Parametric Design Language (ADPL) was used to create the input for 

the vault models, rather than the often cumbersome and faulty graphical user interface.  

Not only does ADPL facilitate changes in the model, but since ADPL can be run from any 

.txt file, the code is easily stored and transported.  Vault parameters can also be altered 

simply at the beginning of the code such that various geometries could be analyzed easily. 
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3 MODEL OF AN IDEAL QUADRIPARTITE VAULT 

As briefly mentioned in the Introduction of this report, quadripartite vaults are 

considered the most structurally efficient of medieval vaulting technologies because of how 

they distribute internal stresses and external thrust to flying buttresses.  To account for 

variance in construction methods and the lack of original drawings or plans for the original 

four-part vaults at Beauvais, an ideal four-part vault was modeled.  This model assumed 

that the groins of the vault were parabolic and the peaks of the vault were formed by the 

lines y = x and y = -x.  Footprints of Beauvais cathedral were obtained via laser scans 

collected by Professor Andrew Tallon of Vassar College and made available to the public 

via the Kycera Family Foundation’s documentation project CyArk.org Figure 6.   

 

From the footprint data and point clouds, it was determined that the arches were 

equilateral arches that sprung from a height of approximately 4m Figure 7.  Since an ideal 

quadripartite vault is based loosely on the solid formed by two intersection hyperbolic 
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paraboloids, it was determined that parabolas fit to the curve formed by the arch geometry 

and the springing point would best model an ideal quadripartite vault in ANSYS®.   

 

3.1 GEOMETRY 

To construct the vault geometry, ANSYS® was implemented rather than another 

solid modeling software.  Solid models transferred to ANSYS® for finite element analysis 

often suffer loss of data in the process and as a result, it is preferable to program the 

geometry directly into the analysis software.  Keypoints were constructed to define the vault 

geometry according to the equations outlined above.  The keypoints were then meshed and 

assigned shell, material, and element properties.  This approach is known as the Solid 

Modeling approach in which models are constructed from the most basic element to the 

most complex.  An alternative in ANSYS® is the Direct Generation method in which 

elements or volumes are first defined and then assigned automatically generated keypoints, 
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lines, and areas.  However, the direct generation method is only available for shapes within 

the ANSYS® library of predefined shapes, of which the quadripartite vault is not included. 

          

 The shear number of keypoints required for this model demanded a looping code 

structure.  This loop effectively generates a series of parabolas according to the equation set 

above, whose horizontal projection is a set of lines emanating from an origin point.  It is 

important to note that only six parabolas could be generated in ANSYS® due to the 

limited capabilities of the SPLINE function, which creates best-fit lines between a 

maximum of six keypoints.  However, the potential increase in precision with creating 

more than six parabolas is negligible and ANSYS®’s limitations were not considered a 

hindrance. 

 The parabolas themselves were similarly fit with the SPLINE function.  While 

technically, parabolas require only three points to define them, ANSYS® did not fit them 

as well as expected.  Thus, six points were plotted per parabola such that the points of the 

parabolas with maximum curvature were well defined.  The line formations below were 

generated after connecting all keypoints with splines. 
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“Skinning” a non-planar shape over the vault geometry created areas between lines and 

keypoints Figure 9.  ANSYS® performs this step automatically by applying a “Coon’s 

Patch” to the figures.  To accurately generate this shape, it is necessary to tabulate the 

keypoint numbers and line numbers to then associate them as defining an area.  Once and 

area is defined, it is not necessary to create volumes—the shell element in ANSYS® receives 

an input thickness vault, thus creating a volume. 
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It is important to note that keypoints, areas, and lines have no structural properties 

assigned to them.  In complex models like the ideal quadripartite vault once geometries are 

defined, nodes must also be created.  Using an automatic node generation based on points 

of greatest curvature, structural nodes were created to perform the analysis Figure 11.  

 

 

 

To analyze the model as a finite element problem, it is necessary to mesh the areas into 

discrete elements.  While this can be accomplished manually, the AMESH command can 

creat a more thorough mesh via automatic sizing algorithms.  Points of greatest curvature 

receive the smallest mesh while more planar sections receive a less-fine mesh.  This enables 

a more efficient yet precise solution. 
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4 MODEL OF AN IDEAL SEXPARTITE VAULT 

To better approach the geometry of a Beauvais Cathedral sexpartite vault, an ideal 

sexpartite vault was modeled.  In this case, “ideal” refers to a vault with the footprint of a 

regular hexagon.  The most significant difference between this model and the ideal 

quadripartite model is the method in which they are coded into ANSYS®.  The 

quadripartite model was relatively simple: one of the four sections was created and simply 

mirrored across the x-and y-axes.  However, since the sexpartite model is not related to a 

Cartesian coordinate system, but rather, a polar coordinate system, the model had to be 

generated via a looping mechanism.  The model began in Cartesian coordinates but 

switched to polar coordinate systems to plot vault segments 60-degrees apart.  Within each 

change to polar coordinate system, there was switch back to Cartesian coordinates so that 

the parabolas could be best defined.  The code for this model is reproduced in Appendix B 

of this report. 

This being said, the theory and practice behind the remaining aspects of the model 

are identical to that described in chapter 3 of this report.  Node and mesh generation were 

achieved via the same commands as in the quadripartite vault.  The sexpartite vault is 

represented in Figures 13-16 below. 
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5 MODEL OF BEAVAIS CATHEDRAL VAULT 

The model of an actual vault from Beauvais Cathedral was constructed according to 

the geometries outlines by the point cloud from CyArk Figure 7.  Since the vaults 

approximately contain equilateral arches (arches in which an equilateral triangle can be 

inscribed), it was simple approximate these values with parabolic spline curves.  Since this 

vault, while a six-part vault is perhaps more similar to the quadripartite model, an identical 

coding process was implemented.  One segment of the vault was reflected across the x- and 

y-axes.  Again, the remaining theory behind the finite element modeling tools can be found 

in section 3 of this report.  The code for this vault may be located in Appendix C.  Below 

are images of the Beauvais Cathedral Model Figures 17-19. 



21 | P a g e  
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6 LOADING SCENARIOS 

 

6.1 Dead Load 

The self-weight of the vault is modeled in ANSYS® as a gravity load of 9.81m/s2 

applied at every nodal location on the vaults.  ANSYS® assumes an input density of stone 

masonry and vertical acceleration and automatically applies the load based on the model 

shape and material properties. 

 

6.2  Wind Load 

Wind loads as prescribed by the ASCE code are not applicable to vault-type 

structures and any attempt to better model wind loading would still not approximate the 

vaults’ actual response to wind.  Therefore, a worst-case scenario was assumed: wind loads 

of 100mph acting directly on the horizontal projection of the vaults.  Further analysis of 

wind loads would be for purely pedagogical purposes—the only experiments worth 

conduction would be wind tunnel tests on a scale model of a vault. 

 Wind load not only acts on the horizontal projection, but also creates an uplift 

pressure that counteracts the gravity load.  Values for uplift were difficult to determine 

given that the vaults are not specified to a given code and are part of a larger structure.  

Wind will behave entirely differently if the vaults were analyzed as a part of the entire 

cathedral.  Ultimately, a wind pressure of 100mph was applied to the nodes on the 

horizontal projection and a reasonable value for wind uplift pressure was applied on all 

nodes.  It is important to note the differences in horizontal projections of the vault models:  

the wind will be applied directly on an edge for both the ideal sexpartite and Beauvais vault 

models.  However, for the ideal sexpartite model, much of the wind will be applied on the 

groined regions.  Thus, for the latter model, point loads were applied on both edge and 

area of the approximate horizontal projection. 
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7 RESULTS 

Two components of loading results are analyzed in this report: external thrust that 

would normally be delivered to the flying buttressing system and internal stresses.  Since 

internal stresses for complicated structures like vaults are difficult to characterize, the Von 

Mises stresses were examined. 

 

7.1 External Thrust 

Quadripartite vaults and sexpartite vaults have very different external thrusts in that 

the sexpartite vaults have a much greater horizontal component, where quadripartite vaults 

are theoretically equal in both directions Figure 20.   The external thrusts correspond to 

the reaction solution of each of the feet of the vault. 
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Node # Fx Fy Fz 

1 -5437.9      -5466.0       54104 

6 -5426.2       5360.7       53873 

32 5444.3      5465.2       54126 

42 5419.8       5390.4       53854 

   

Node # Fx Fy Fz 

1 -463.74 -295.63 3100.7 

6 -429.83 219.75 3012.8 

35 -15.084 458.48 2948.9 

60 96.919 70.981 776.08 

85 481.14 -260.82 3122.6 

110 15.223 -576.86 3173.3 

Node # Fx Fy Fz 

1 557.65 265.24 1797.4 

6 -469.15 301.68 1703.5 

32 -247.37 -118.85 602.95 

42 175.66 -162.02 544.83 
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7.2 Von Mises Stresses 

Reasonable values for Von Mises stresses were obtained from loading.  Stress 

gradients are depicted below Figures 21-23.  The quadripartite model clearly demonstrates 

the lowest internal stresses and distributes them evenly across the structure.  With the 

exception of the feet, there is little stress build-up in the vault.  The sexpartite model 

demonstrates a concentration of stresses along the groins and again, in the feet.  The same 

behavior is reflected in the Beauvais Cathedral model.  If these vaults were connected to 

the remainder of the structure, concentrations of stress in the feet would not be as evident 

and may not exist at all.  This discrepancy is addresses in section 8 of this report.  Deflected 

shapes are presented in Appendix D.   
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8 MODELING LIMITATIONS 

I feel compelled to briefly discuss limitations in my project and with computer 

modeling in general.  To begin, vaults are impossible to analyze after being plucked from 

the original structure.  A full description of their structural characteristics would depend 

on their interactions with the entirety of a gothic cathedral.  However, modeling the entire 

cathedral both were out of the scope of this project and my personal interest.  Admittedly, 

it is unfair to simply model one portion of a larger structure without consideration of the 

remainder of the structure. 

Furthermore, there are limitations in computer modeling.  Perhaps the most 

significant of these is the differences in construction versus a mathematical computer 

model.  Modern construction techniques have difficulties with a computer-precise level of 

accuracy—medieval construction was even more variable.  Within modeling software, there 

are other assumptions that must be considered.  For example, structural properties that 

programs like ANSYS® assign to nodes cannot be considered completely accurate.  While 

they are indeed excellent approximations, the amalgam of small discrepancies could 

contribute to significant errors in computer models. 

The thickness of the vaults was yet another limitation because the masonry 

materials have yet to be measured.  Models were given a thickness of 0.3125m, 

corresponding to the thickness Prof. Robert Mark of Princeton University used in his 

research in the quadripartite vaults in Chartres Cathedral.  This value is realistic and an 

excellent alternative to guessing. 
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9 CONCLUSIONS 

 

I was able to successfully design models for three vaults: an ideal quadripartite 

vault, and ideal sexpartite vault, and a vault from Beauvais Cathedral.  Models were 

programmed in ANSYS® using the ANSYS® Parametric Design Language and ultimately 

loaded with horizontal wind load and gravity load.  Results confirmed already-published 

scholarship and provided insight into medieval vaulting technologies via finite element 

computer methods.  This project was conducted with no cost incurred to the Swarthmore 

College Engineering Department and satisfies the ABET criteria 3c, which outlines 

requirements for design projects. 
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11 APPENDIX LISTING 

 

A ADPL Code for Ideal Quadripartite Vault Model 

B ADPL Code for Ideal Sexpartite Vault Model 

C ADPL Code for Beauvais Cathedral Vault Model 

D Deflected and Undeflected Shapes for Models 
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Appendix A: ADPL Code for Ideal Quadripartite Vault Model 

 

/FILNAM, Neville 
/title, Neville, the Quadripartite Vault 
/prep7 
 
!initial values, definition of parameters 
 x=0   
 y=0 
 z=0 
 z_one=0 
 z_two=0 
 z_three=0 
 Q=1 !keypoint numbering system 
 
 
R=4.6188021 
y=R 
 
*DOWHILE, y 
 x=R 
 x=y 
 
 z_one=-((SQRT(3)/2)*(y**2)) 
 z_two=-((SQRT(3)/2)*((y/4)**2)) 
 z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
 
 K, Q, x, y, z_one 
 
 K, Q+1, x, (0.84*y), z_three 
 
 K, Q+2, x, (y/4), Z_two 
 
 K, Q+3, x, -(y/4), z_two 
 
 K, Q+4, x, -(0.84*y), z_three 
  
 K, Q+5, x, -y, z_one 
  
 SPLINE, Q, Q+1, Q+2, Q+3, Q+4, Q+5, 
  
 Q=Q+6 
 y=y-(R/5) 
*ENDDO 
 
 
K, 0, 0, 0 
 
 
RUNS=6 
I=1 
 
*DOWHILE, RUNS 
 SPLINE, I, I+6, I+12, I+18, I+24, 31, 
 I=I+1 
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 RUNS=RUNS-1 
*ENDDO 
 
 
RUNS=5 
I=1 
J=26 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=5 
I=21 
J=30 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
ARSYM, x, ALL, , , , 1, 0, 
 
!_______________________________________________ 
 
R=4.6188021 
x=R 
Q=63 
 
*DOWHILE, x 
 y=R 
 y=x 
 z_one=-((SQRT(3)/2)*(x**2)) 
 z_two=-((SQRT(3)/2)*((x/4)**2)) 
 z_three=-((SQRT(3)/2)*((0.84*x)**2)) 
 
 K, Q, x, y, z_one 
 
 K, Q+1, (0.84*x), y, z_three 
 
 K, Q+2, (x/4), y, Z_two 
 
 K, Q+3, -(x/4), y, z_two 
 
 K, Q+4, -(0.84*x), y, z_three 
  
 K, Q+5, -x, y, z_one 
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 SPLINE, Q, Q+1, Q+2, Q+3, Q+4, Q+5, 
  
 Q=Q+6 
 x=x-(R/5) 
*ENDDO 
 
RUNS=6 
I=63 
 
*DOWHILE, RUNS 
 SPLINE, I, I+6, I+12, I+18, I+24, 31, 
 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=5 
I=111 
J=136 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=5 
I=131 
J=140 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
ARSYM, y, 51, 75, 1, , 1, 0, 
 
NUMMRG, KP, , ,  
 
!Restraints at keypoints--each corner of vault 
DK, 1, UX, 0 
DK, 1, UY, 0 
DK, 1, UZ, 0 
 
DK, 6, UX, 0 
DK, 6, UY, 0 
DK, 6, UZ, 0 
 
DK, 42, UX, 0 
DK, 42, UY, 0 
DK, 42, UZ, 0 
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DK, 32, UX, 0 
DK, 32, UY, 0 
DK, 32, UZ, 0 
 
!element type and properties 
ET, 1, SHELL93  
 
MP, EX, 1, 50E9 
MP, EY, 1, 50E9 
MP, EX, 1, 50E9 
MP, NUXY, 1, 0 
MP, PRXY, 1, 0 
MP, DENS, 1, 2700/9.81 
 
R, 1, 0.3175, 0.3175, 0.3175, 0.3175, 0, 0, 
MAT, 1 $ ETYPE, 1 $ REAL, 1 $ TYPE, 1 $ AATT, 1, 1, 1 
MSHKEY, 0 
MSHAPE, 0, 2D 
SMRTSIZE, 5 
AMESH, ALL 
 
ESEL, ALL 
ASUM, DEFAULT 
*GET, SHELLAREA, AREA, , AREA 
 
!Load Scenarios 
 
!Dead load 
ACEL, 0, 0, 9.81 
 
!Maximum regional wind load, uplift on roof, horizontal lift on side 
!F, ALL, FZ, 0.1764 
FK, 113, FY, 20 
FK, 108, FY, 20 
FK, 94, FY, 20 
FK, 6, FY, 20 
FK, 57, FY, 20 
FK, 114, FY, 20 
FK, 109, FY, 20 
FK, 95, FY, 20 
FK, 110, FY, 20 
FK, 105, FY, 20 
 
F, ALL, FZ, -0.074 
 
/solu 
solve 
 
SAVE 
FINISH 
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Appendix B: ADPL Code for Ideal Sexpartite Vault Model 

/FILNAM, test3 
/title, Yossarian, the Sexpartite Vault 
/prep7 
 
!initial values, definition of parameters 
 
 x=0   
 y=0 
 z=0 
 theta=360 
 z_one=0 
 z_two=0 
 z_three=0 
 Q=4  
 
!creates point at middle of vault geometry 
K, 1, 0, 8, 0, !keypoint 1: origin 
K, 2, 1, 8, 0, !keypoint 2: defines x axis 
K, 3, 0, 9, 0, !keypoint 3: defines x-y plane 
 
!Change coordinate system to polar. 
!CSKP, coordinate system number (>10), cs reference number, origin, x 
axis, xy plane, 
 
 
!create lines emanating from origin (keypoint 1) 
  
theta=360 
 
 y=4.6188021 
 R=4.6188021 
  
 
 
 !changes coordinate system to polar 
 CSKP, 11, 2, 1, 2, 3, 
  
 
 !creates local cartesian coordinate system 
 CLOCAL, 12, 0, 0.0000001, theta, 0,0,0,0 
  
 y=R 
 
 *DOWHILE, y 
  
  
  x=SQRT(3)*y 
  z_one=-((SQRT(3)/2)*(y**2)) 
  z_two=-((SQRT(3)/2)*((y/4)**2)) 
  z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
 
  K, Q, x, y, z_one 
 
  K, Q+1, x, (0.84*y), z_three 
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  K, Q+2, x, (y/4), Z_two 
  
  K, Q+3, x, -(y/4), z_two 
 
  K, Q+4, x, -(0.84*y), z_three 
  
  K, Q+5, x, -y, z_one 
  
  SPLINE, Q, Q+1, Q+2, Q+3, Q+4, Q+5 
  
  Q=Q+6 
  y=y-(R/5) 
 
 *ENDDO 
 
!__________________________________________________________ 
theta=300 
 
 
 !changes coordinate system to polar 
 CSKP, 11, 2, 1, 2, 3, 
  
 
 !creates local cartesian coordinate system 
 CLOCAL, 12, 0, 0.0000001, theta, 0,0,0,0 
  
 y=R 
 
 *DOWHILE, y 
  
  
  x=SQRT(3)*y 
  z_one=-((SQRT(3)/2)*(y**2)) 
  z_two=-((SQRT(3)/2)*((y/4)**2)) 
  z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
 
  !K, Q, x, y, z_one 
 
  K, Q, x, (0.84*y), z_three 
 
  K, Q+1, x, (y/4), Z_two 
  
  K, Q+2, x, -(y/4), z_two 
 
  K, Q+3, x, -(0.84*y), z_three 
  
  K, Q+4, x, -y, z_one 
  
   
  
  Q=Q+5 
  y=y-(R/5) 
 
 *ENDDO 
!__________________________________________________________ 
theta=240 
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 !changes coordinate system to polar 
 CSKP, 11, 2, 1, 2, 3, 
  
 
 !creates local cartesian coordinate system 
 CLOCAL, 12, 0, 0.0000001, theta, 0,0,0,0 
  
 y=R 
 
 *DOWHILE, y 
  
  
  x=SQRT(3)*y 
  z_one=-((SQRT(3)/2)*(y**2)) 
  z_two=-((SQRT(3)/2)*((y/4)**2)) 
  z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
 
  !K, Q, x, y, z_one 
 
  K, Q, x, (0.84*y), z_three 
 
  K, Q+1, x, (y/4), Z_two 
  
  K, Q+2, x, -(y/4), z_two 
 
  K, Q+3, x, -(0.84*y), z_three 
  
  K, Q+4, x, -y, z_one 
  
   
  
  Q=Q+5 
  y=y-(R/5) 
 
 *ENDDO 
!__________________________________________________________ 
theta=180 
 
 
 !changes coordinate system to polar 
 CSKP, 11, 2, 1, 2, 3, 
  
 
 !creates local cartesian coordinate system 
 CLOCAL, 12, 0, 0.0000001, theta, 0,0,0,0 
  
 y=R 
 
 *DOWHILE, y 
  
  
  x=SQRT(3)*y 
  z_one=-((SQRT(3)/2)*(y**2)) 
  z_two=-((SQRT(3)/2)*((y/4)**2)) 
  z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
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  !K, Q, x, y, z_one 
 
  K, Q, x, (0.84*y), z_three 
 
  K, Q+1, x, (y/4), Z_two 
  
  K, Q+2, x, -(y/4), z_two 
 
  K, Q+3, x, -(0.84*y), z_three 
  
  K, Q+4, x, -y, z_one 
  
   
  
  Q=Q+5 
  y=y-(R/5) 
 
 *ENDDO 
!__________________________________________________________ 
theta=120 
 
 
 !changes coordinate system to polar 
 CSKP, 11, 2, 1, 2, 3, 
  
 
 !creates local cartesian coordinate system 
 CLOCAL, 12, 0, 0.0000001, theta, 0,0,0,0 
  
 y=R 
 
 *DOWHILE, y 
  
  
  x=SQRT(3)*y 
  z_one=-((SQRT(3)/2)*(y**2)) 
  z_two=-((SQRT(3)/2)*((y/4)**2)) 
  z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
 
  !K, Q, x, y, z_one 
 
  K, Q, x, (0.84*y), z_three 
 
  K, Q+1, x, (y/4), Z_two 
  
  K, Q+2, x, -(y/4), z_two 
 
  K, Q+3, x, -(0.84*y), z_three 
  
  K, Q+4, x, -y, z_one 
  
   
  
  Q=Q+5 
  y=y-(R/5) 
 
 *ENDDO 
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!__________________________________________________________ 
theta=60 
 
 
 !changes coordinate system to polar 
 CSKP, 11, 2, 1, 2, 3, 
  
 
 !creates local cartesian coordinate system 
 CLOCAL, 12, 0, 0.0000001, theta, 0,0,0,0 
  
 y=R 
 
 *DOWHILE, y 
  
  
  x=SQRT(3)*y 
  z_one=-((SQRT(3)/2)*(y**2)) 
  z_two=-((SQRT(3)/2)*((y/4)**2)) 
  z_three=-((SQRT(3)/2)*((0.84*y)**2)) 
 
  !K, Q, x, y, z_one 
 
  K, Q, x, (0.84*y), z_three 
 
  K, Q+1, x, (y/4), Z_two 
  
  K, Q+2, x, -(y/4), z_two 
 
  K, Q+3, x, -(0.84*y), z_three 
  
  !K, Q+4, x, -y, z_one 
  
   
  
  Q=Q+4 
  y=y-(R/5) 
 
 *ENDDO 
 
 
SPLINE, 9, 34, 35, 36, 37, 38 
SPLINE, 15, 39, 40, 41, 42, 43 
SPLINE, 21, 44, 45, 46, 47, 48 
SPLINE, 27, 49, 50, 51, 52, 53 
SPLINE, 33, 54, 55, 56, 57, 58 
 
SPLINE, 38, 59, 60, 61, 62, 63 
SPLINE, 43, 64, 65, 66, 67, 68 
SPLINE, 48, 69, 70, 71, 72, 73 
SPLINE, 53, 74, 75, 76, 77, 78 
SPLINE, 58, 79, 80, 81, 82, 83 
 
SPLINE, 63, 84, 85, 86, 87, 88 
SPLINE, 68, 89, 90, 91, 92, 93 
SPLINE, 73, 94, 95, 96, 97, 98 
SPLINE, 78, 99, 100, 101, 102, 103 
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SPLINE, 83, 104, 105, 106, 107, 108 
 
SPLINE, 88, 109, 110, 111, 112, 113 
SPLINE, 93, 114, 115, 116, 117, 118 
SPLINE, 98, 119, 120, 121, 122, 123 
SPLINE, 103, 124, 125, 126, 127, 128 
SPLINE, 108, 129, 130, 131, 132, 133 
 
SPLINE, 113, 134, 135, 136, 137, 4 
SPLINE, 118, 138, 139, 140, 141, 10 
SPLINE, 123, 142, 143, 144, 145, 16 
SPLINE, 128, 146, 147, 148, 149, 22 
SPLINE, 133, 150, 151, 152, 153, 28 
 
!______________________________________________________________________
_______ 
RUNS=6 
I=4 
 
*DOWHILE, RUNS 
 SPLINE, I, I+6, I+12, I+18, I+24, 1, 
 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
----- 
RUNS=5 
I=34 
 
*DOWHILE, RUNS 
 SPLINE, I, I+5, I+10, I+15, I+20, 1, 
 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
----- 
RUNS=5 
I=59 
 
*DOWHILE, RUNS 
 SPLINE, I, I+5, I+10, I+15, I+20, 1, 
 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
----- 
RUNS=5 
I=84 
 
*DOWHILE, RUNS 
 SPLINE, I, I+5, I+10, I+15, I+20, 1, 
 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
----- 
RUNS=5 
I=109 
 
*DOWHILE, RUNS 
 SPLINE, I, I+5, I+10, I+15, I+20, 1, 
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 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
----- 
RUNS=4 
I=134 
 
*DOWHILE, RUNS 
 SPLINE, I, I+4, I+8, I+12, I+16, 1, 
 I=I+1 
 RUNS=RUNS-1 
*ENDDO 
 
 
--------------- 
 
!AL, 1, 6, 296, 151 
RUNS=4 
I=1 
J=151 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
RUNS=5 
I=21 
J=155 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
----- 
RUNS=5 
I=26 
J=176 
 
AL, 26, 31, 171, 176 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 
 I=I+5 
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 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=5 
I=46 
J=180 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
----- 
RUNS=5 
I=51 
J=201 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 AL, I+5, I+10, J+25, J+30 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=5 
I=71 
J=205 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
----- 
RUNS=5 
I=76 
J=226 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
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*ENDDO 
 
RUNS=5 
I=96 
J=230 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
----- 
RUNS=5 
I=101 
J=251 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=5 
I=121 
J=255 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
----- 
RUNS=4 
I=126 
J=276 
 
*DOWHILE, RUNS 
 AL, I, I+5, J, J+5 
 AL, I+1, I+6, J+5, J+10 
 AL, I+2, I+7, J+10, J+15 
 AL, I+3, I+8, J+15, J+20 
 AL, I+4, I+9, J+20, J+25 
 I=I+5 
 J=J+1 
 RUNS=RUNS-1 
*ENDDO 
 
RUNS=4 
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I=146 
J=280 
 
*DOWHILE, RUNS 
 AL, I, J, J+5 
 I=I+1 
 J=J+5 
 RUNS=RUNS-1 
*ENDDO 
 
----- 
 
AL, 130, 135, 296, 151 
AL, 135, 140, 152, 297 
AL, 140, 145, 153, 298 
AL, 145, 150, 154, 299 
AL, 150, 155, 300 
 
NUMMRG, KP, , ,  
 
!Restraints at keypoints--each corner of vault 
DK, 4, UX, 0 
DK, 4, UY, 0 
DK, 4, UZ, 0 
 
DK, 9, UX, 0 
DK, 9, UY, 0 
DK, 9, UZ, 0 
 
DK, 38, UX, 0 
DK, 38, UY, 0 
DK, 38, UZ, 0 
 
DK, 63, UX, 0 
DK, 63, UY, 0 
DK, 63, UZ, 0 
 
DK, 88, UX, 0 
DK, 88, UY, 0 
DK, 88, UZ, 0 
 
DK, 113, UX, 0 
DK, 113, UY, 0 
DK, 113, UZ, 0 
 
!element type and properties 
ET, 1, SHELL93  
 
MP, EX, 1, 50E9 
MP, EY, 1, 50E9 
MP, EX, 1, 50E9 
MP, NUXY, 1, 0 
MP, PRXY, 1, 0 
MP, DENS, 1, 2700/9.81 
 
R, 1, 0.01, 0.01, 0.01, 0.01, 0, 0, 
MAT, 1 $ ETYPE, 1 $ REAL, 1 $ TYPE, 1 $ AATT, 1, 1, 1 
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MSHKEY, 0 
MSHAPE, 0, 2D 
SMRTSIZE, 5 
AMESH, ALL 
 
ESEL, ALL 
ASUM, DEFAULT 
*GET, SHELLAREA, AREA, , AREA 
 
!Load Scenarios 
 
!Dead load 
ACEL, 0, 0, 9.81 
 
!F, ALL, FZ, 0.1764 
FK, 35, FY, 20 
FK, 45, FY, 20 
FK, 12, FY, 20 
FK, 13, FY, 20 
FK, 5, FY, 20 
FK, 8, FY, 20 
FK, 25, FY, 20 
FK, 24, FY, 20 
FK, 136, FY, 20 
FK, 144, FY, 20 
 
F, ALL, FZ, -0.074 
/solu 
solve 
 
SAVE 
FINISH 
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Appendix C: ADPL Code for Beauvais Cathedral Vault Model 

 
/FILNAM, Luxor 
/title, Luxor, the Beauvais Vault 
/prep7 
 
!initial values, definition of parameters 
 
 x=0   
 y=0 
 z=0 
 
!input keypoints 
K, 1, 0, -4, 0, 
K, 2, 0, -3, 0, 
K, 3, 0, -2, 0, 
K, 4, 0, -1, 0, 
K, 5, 0, 0, 0, 
 
SPLINE, 1, 2, 3, 4, 5, 
 
K, 6, -8, -4, -SQRT(80), 
K, 7, -6, -3, SQRT(35)-SQRT(80), 
K, 8, -4, -2, SQRT(60)-SQRT(80), 
K, 9, -2, -1, SQRT(75)-SQRT(80), 
 
SPLINE, 6, 7, 8, 9, 5, 
 
K, 10, -8, -2, 0, 
K, 11, -6, -1.5, 0, 
K, 12, -4, -1, 0,  
K, 13, -2, -0.5, 0, 
 
SPLINE, 10, 11, 12, 13, 5, 
 
K, 14, -8, 0, -8, 
K, 15, -6, 0, SQRT(18)-8, 
K, 16, -4, 0, SQRT(48)-8, 
K, 17, -2, 0, SQRT(60)-8, 
 
SPLINE, 14, 15, 16, 17, 5, 
 
K, 18, 8, -4, -SQRT(80), 
K, 19, 6, -3, SQRT(35)-SQRT(80), 
K, 20, 4, -2, SQRT(60)-SQRT(80), 
K, 21, 2, -1, SQRT(75)-SQRT(80), 
 
SPLINE, 18, 19, 20, 21, 5 
 
SPLINE, 6, 1, 18 
SPLINE, 7, 2, 19 
SPLINE, 8, 3, 20 
SPLINE, 9, 4, 21 
SPLINE, 6, 10, 14 
SPLINE, 7, 11, 15 
SPLINE, 8, 12, 16 
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SPLINE, 9, 13, 17 
 
AL, 22, 24, 17, 1 
AL, 24, 26, 18, 2 
AL, 26, 28, 19, 3 
AL, 28, 20, 4 
 
AL, 21, 23, 1, 5 
AL, 23, 25, 2, 6 
AL, 25, 27, 3, 7 
AL, 27, 4, 8 
 
AL, 29, 31, 5, 9 
AL, 31, 33, 6, 10 
AL, 33, 35, 7, 11 
AL, 35, 8, 12 
 
AL, 30, 32, 9, 13 
AL, 32, 34, 10, 14 
AL, 34, 36, 11, 15 
AL, 36, 12, 16 
 
 
ARSYM, x, ALL, , , , 1, 0, 
ARSYM, Y, ALL, , , , 1, 0, 
 
NUMMRG, KP, , ,  
 
!Restraints at keypoints--each corner of vault 
DK, 6, UX, 0 
DK, 6, UY, 0 
DK, 6, UZ, 0 
 
DK, 18, UX, 0 
DK, 18, UY, 0 
DK, 18, UZ, 0 
 
DK, 52, UX, 0 
DK, 52, UY, 0 
DK, 52, UZ, 0 
 
DK, 44, UX, 0 
DK, 44, UY, 0 
DK, 44, UZ, 0 
 
!element type and properties 
ET, 1, SHELL93  
 
MP, EX, 1, 50E9 
MP, EY, 1, 50E9 
MP, EX, 1, 50E9 
MP, NUXY, 1, 0 
MP, PRXY, 1, 0 
MP, DENS, 1, 2700/9.81 
 
R, 1, 0.3175, 0.3175, 0.3175, 0.3175, 0, 0, 
MAT, 1 $ ETYPE, 1 $ REAL, 1 $ TYPE, 1 $ AATT, 1, 1, 1 
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MSHKEY, 0 
MSHAPE, 0, 2D 
SMRTSIZE, 5 
AMESH, ALL 
 
ESEL, ALL 
ASUM, DEFAULT 
*GET, SHELLAREA, AREA, , AREA 
 
!Load Scenarios 
!1197 
!Dead load 
ACEL, 0, 0, 9.81 
 
!Maximum regional wind load, uplift on roof, horizontal lift on side 
!F, ALL, FZ, 0.1764 
FK, 7, FY, 20 
FK, 8, FY, 20 
FK, 10, FY, 20 
FK, 12, FY, 20 
FK, 56, FY, 20 
FK, 58, FY, 20 
FK, 52, FY, 20 
FK, 6, FY, 20 
FK, 14, FY, 20 
FK, 53, FY, 20 
 
F, ALL, FZ, -0.074 
 
/solu 
solve 
 
SAVE 
FINISH 
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Appendix D: Deflected and Undeflected Shapes for Models 
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